CS193j, Stanford Handout #12
Winter, 2001-02 Nick Parlante

Drawing

Q: How to get Java GUI on screen?

Q: How do you get some GUI components on screen?

A: Create a window (also known as a "frame") object. Install components in it
(labels, buttons, ...).. The system will manage the window and components,
sending them notifications as user events happen (clicking, typing). The
various components will draw themselves and handle events as they wish.

OOP GUI Systems

1. Classes

Hierarchy of classes for common problems -- drawing, controls, windows,
scrolling, ...

2. System: Event -> Notifications

There is a background system that manages the basic bookkeeping and
orchestration of windows and events. AKA "the system"

"User events" -- clicking, typing, ...

The system manages a queue of user events as they happen (realtime), and
dispatches them one at a time to objects as "notification” messages

3. Instantiate Library Classes

Many tasks are as simple as constructing and installing system classes --
windows, buttons, etc.

This is the pretty easy -- requires some reading of the library class docs

Pull a library object "off the shelf"

4. Subclass Library Classes

To introduce custom behavior, subclass off a library class and use overriding to
insert custom code

This is a trickier programming problem -- you need some understanding of the
superclass in order to do the override "in harmony" with the superclass.

e.g. Subclass off button so it beeps when clicked -- keep the standard button code
for drawing, mouse tracking, etc., but just add this one variation.

Java Swing GUI
AWT vs. Swing/ZJFC

AWT
Lame, broken, first iteration GUI Objects
AWT drawing uses "native peers" -- creating an AWT button creates a native
peer (Unix, Mac, Win32) button to put on screen, and then tries to keep the
AWT button and the peer in sync. This proved to be a bad strategy!
Swing
Also known as JFC
Implemented in Java -- the swingall.jar is the java code for swing -- it is the
same swingall.jar running on all platforms.
Built on the AWT primitives, but done right
10x more classes, depth, and functionality than AWT
Has pluggable look-and-feel feature where buttons, etc can look like the ones
for that platform.

Sw ng

AW

Java VM

Cperating System+ its native GU

AWT vs. Swing classes

Some old AWT classes are still used, but mostly we will use the modern Swing
versions.
e.g. AWT Component is the superclass of JComponent

Theme: Things Draw Themselves

We will have objects that draw themselves -- labels, buttons, etc.
The system sends components "draw yourself" notifications as needed

Theme: Layout Manager

A "layout manager" will arrange the size and position of the things on screen.
For now, we'll ignore the layout manager

JComponent

The superclass of things that draw on screen.
Defines the basic notions of geometry and drawing -- details below

JLabel

Built in class that displays a little text string

new JLabel("Hello there");

JFrame

A single window

Has a "content pane" JComponent that contains all components in the frame

Send frame.getContentPane() to get the content pane

By default, closing a frame just hides it. See the code below so that closing a
frame actually quits the application

Content Pane / Layout Manager

Use the add() message to add components to the content pane.
Content pane uses a "Layout Manager" to size and position its components

First Frame Example
A simple subclass of JFrame that puts 3 labels in its content pane.
[0 =—=rFirstframe=—=[H0H

Hello World. Another Label.
Klaatu Barada Nikto!

e
FirstFrame Code
/1 FirstFrane.java
/*
Denonstrates bringing up a frame with some | abels.
*/

i mport java.awt.*;

i mport javax.sw ng.*;

i mport java.util.*;

i mport java.awt.event.*;

public class FirstFrame extends JFrane {
public FirstFrane(String title) {
super(title); [/ superclass ctor takes frane title

/1l Get content pane -- contents of the w ndow
JConponent content = (JConponent) get Content Pane();

/1 Set to use the "flow' |ayout
/1 (controls the arrangenent of the conmponents in the content)
content. set Layout (new Fl owLayout ());

/1 Background color is a property of all components --
/] set it to white
cont ent . set Backgr ound(Col or. white);

/1 Use add() to install conponents
content.add(new JLabel ("Hello World."));

cont ent . add(new JLabel (" Anot her Label ."));
content. add(new JLabel ("Kl aatu Barada Ni kto!"));

/1 Force the frane to size/layout its conponents
pack() ;
set Vi si bl e(true);

/1 By default, the frame just hides when cl osed.
/1 The follow ng causes programexit (with Java 1.2)
/1 frame. set Defaul t Cl oseQper ati on(W ndowConst ants. EXIT_ON CLCSE) ;

/1 This is the old way to cause programexit on franme cl ose
addW ndowLi st ener (
new W ndowAdapter () {
public void wi ndowd osi ng(WndowEvent e) {
System exit(0);
}

}
)
}

public static void main(String[] args) {
new FirstFrame("First Frame");
}

}

JComponent
JComponent Basics

Drawable
The superclass of all drawable, on screen things
Has a size and position on screen -- a "bounds" rectangle
Drawvs itself, within its bounds
227 public methods
Go read through the method documentation page for JComponent once (off
the home page)
Class Hierarchy
JComponent has two superclasses that are AWT classes:
(AWT) Component -- (AWT) Container -- JComponent
There are few times the AWT classes, intrude, but mostly we'll try to
conceptually collapse everything down to JComponent.

Component Location/Size

Size + Loc
Each JComponent has its own co-ord system with the origin (0,0) in the upper
left corner

The "bounds" of the component is the rectangle with its upper left corner at
(0,0) and extending out to component.getWidth() and
component.getHeight(), with x growing to the right and y growing down

Local Co-ord System

The co-ord system of the component is not changed as the component moves
around.

The component draws relative to its own local coordinate system with (0, 0) at
the upper left

Parent container

The "parent” is the container that a component is in. The parent is itself a
component.

The "location” of a component is the position of its upper-left corner in the co-
ord system of the parent

PreferredSize

The layout manager determines the component size and location. Use
setPreferredSize() to indicate your wishes to the layout manager. You can
also set min and max sizes that the layout manager will try to respect.

Layout Manager

Looks at the preferred size of everything, the size of the window, etc. and

arranges (size+loc) of everything as best it can.
Send setSize() no, send setPreferredSize() yes

It is rarely the case that the size of component is set by client code that calls
setSize().

Send getWidth, getHeight(), getSize(), getLocation(), getBounds()

Send these messages to determine the size and location of the component
(essentially, its bounds rectangle): (0,0) out to getWidth() getHeight().

You do not get to dictate your geometry -- the LayoutManager does that

Geometry Methods

(Mostly inherited from Component)
Constructor
The initial component is size0 and has no parent
int getWidth(), getHeight()
Return the size of the component
Dimension getSize([Dimension]);

Like above, but get width/height in an object (potentially more slow)

int getX(), getY()

Get the location of the upper left of our co-ord system within our container
(in the co-ord system of the container)

Location getLocation([Point])
As above, but in an object
get/set PreferredSize(Dimension)

Get or set the preferred size, which the layout manager uses whey sizing and
arranging components. The "Dimension” object encapsulates a width and
height.

Rectangle getBounds([Rectangle])

Returns the current bounds in a Rectangle object

boolean contains(x,y), boolean contains(Point)

Test if the component bounds include the given point
setBounds(Rectangle -or- x,y,w,h)
You probably do not want to call this -- the layout manager is responsible for
establishing the bounds
Likewise, do not call setSize()
getParent()
Get a pointer to the parent component

Drawing
OOP GUI Drawing Theory

Subclass off JComponent
Override paintComponent() -- draw within the bounds of the component
Install your components in a window -- they draw themselves

paintComponent(Graphics q)

Sent to a JComponent when it should draw itself

Override to provide custom drawing code

Call getWidth() etc. to see the current geometry -- how big you are
(0,0) is your upper-left corner -- draw yourself within your bounds

paintComponent Example

public void pai nt Conponent (G aphics g) {
/'l super. pai nt Conponent (Q) ; /1 not necessary for sinple cases

int width = getWdth();
i nt height = getHeight();

/1 draw a rect around the bounds of the conponent
g.drawRect (0, O, width-1, height-1); /1 -1 since drawRect overhangs by one

/!l draw a line fromupper-left, to | ower-right
g.drawLi ne(0, O, width-1, height-1);

}
See How Big You Are

Send self getWidth(), etc. to see how big you are -- draw to fill that size.

Passive Draw Style

Note: passive -- you don't demand to draw, you respond -- drawing when the
system says to draw, dealing with however many pixels the system says you
have.

Graphics Obiject

A drawing context object passed to you -- send it drawing commands to do
drawing.

(0,0)

In the upper left hand corner

X extends to the right

Y extends down

g.drawRect(x, y, width, height)

Draws the frame of a rectangle with its upper left at (x,y)

Extends past the given width and height by 1 on the right and bottom , so you
frequently subtract 1 when calling this. | think they were trying to appease
some mathematical elegance with this design, but it fact it was just stupid.

g.fillRect(x, y, width, height)

Uses the current color to fill a colored rect of the given size. Does not
overhang the size by one.

drawLine(x1, y1, X2, y2) -- draws a one pixel wide line between the points
drawsString(String, X, y)
Draws the string, with the lower left of the text line at x,y. Use the Font class
to draw with different font sizing etc.
g.setColor(Color)
Sets the color for subsequence drawing.
There are constants in the Color class such as Color.black, Color.green, etc.
Component.getGraphics()

You probably never want to call this. Use the Graphics passed in to

paintComponent()

MyComponent Example
oE

O =—-simple

Lipper Left

Lipper Left

e

/1 MyConponent.java
cl ass MyConmponent extends JConponent {
MyConponent (i nt width, int height) {

super(); // remi nder that we have a super ctor

/1 Set the preferred size -- used by the [ayout ngr
set PreferredSi ze(new Di mensi on(w dt h, height));

}
/**

Fills a gray rect in the upper left and lower right quarters.
Draws a string and a red frane at the bounds.

Typi cal paint conponent:
-see how big you are
-draw wi thin your bounds
*/
public void pai nt Conponent (G aphics g) {
/1 super. pai nt Conponent (g) ; /1 not necessary for sinple cases

/1l see how big we are
int width = getWdth();
int height = getHeight();

/1 conpute nidpoint
int mdX = wdth/2;
int mdY = height/2;

/1 draw two filled gray rects

g. set Col or (Col or. gray);

g.fillRect (0, 0, mdX, mdy);

g. fillRect(m dX, mdY, w dth-mdX, height-mdY);

/1 add a string at (20, 20) -- relative to our own origin
g. set Col or (Col or.yel | ow) ;
g.drawst ri ng(" Upper Left", 20, 20);

/1 draw a yellow rect frame at our bounds

g. set Col or (Col or.red);

g.drawRect (0, O, width-1, height-1); /1 -1 for drawRect
}

public static void main(String[] args) {
First Frame. mai n(nul 1) ;

JFrame frame = new JFranme("Si nple");

/] Get the content area of the frane
JConponent content = (JConponent) frane. get Cont ent Pane();
cont ent . set Backgr ound(Col or. white);

/1 The Box | ayout nmakes a vertical arrangenent.
/1 1ts conmponents grow and shrink with the w ndow
cont ent . set Layout (new BoxLayout (content, BoxLayout.Y_AXIS));

/! add a few conmponents

cont ent. add(new MyConponent (180, 40));
cont ent. add(new MyConponent (140, 80));
cont ent . add(new MyConponent (120, 120));

/1 This causes everything to get laid out

frame. pack();
frane. setVisible(true);

/1 frame. set Def aul t Gl oseQper at i on(W ndowConst ant s. DI SPOSE_ON_CLCSE) ;

}
}

Layout Managers
Layout Manager Theory

Like HTML -- policy, not exact pixels

1. Don't set explicit (pixel) sizes or positions things

2. The layout managers knows the "intent” (policy) of the layout

e.g. vertical list

3. The layout manager applies the intent to figure the correct size on the fly

Pro: the GUI can work, even though different platforms have fonts with slightly
different metrics

Pro: window re-sizing works (the layout manager policy guides how it fits
components in to the new window size)

Pro: internationalization -- layouts can adjust as the widths required for labels
and buttons change for different languages

Con: new paradigm, can be unwieldy when you just want to say where things
are.

Future: an improved layout paradigm is coming in Java 1.4

Flow Layout

Arranges components left-right, top-down like text.

Box Layout

Aligns components in a line -- either vertically or horizontally

Can install a box layout into an existing JComponent

comp.setLayout(new BoxLayout(comp, BoxLayout.Y AXIS));

Or, can create a "Box" component. There are convenience methods
Box.createVerticalBox() and Box.createHorizontalBox() that return a Box
component. However, Box is not a JComponent, so the setLayout() technique
on a JComponent above is preferable.

Use Box.createVerticalStrut(pixels) to create a little spacer component that be
added to the box between components.

Border Layout

Main content in the center
e.g. the spreadsheet cells
Window size changes mostly go to the center

Decorate with 4 things around the outsize -- north, south, east, west
e.g. the controls around the spreadsheet cells

2nd parameter to add() controls where things go

border.add(comp, BorderLayout. CENTER); // add comp to center

Nested JPanel

JPanel is a simple component that you can put other components in

Use to group other components -- put them both in a JPanel, and put the JPanel
where you want

e.g. group a label with a control

e.g. set the layout of the panel to vertical box, put lots of buttons in it, put the
panel in the EAST of a border layout

Layout Example
| Flow Lavout == 0 H

Hello World. Another Label.
Klaatu Barada Hikto!

O
HH

Box Layout = H H

Homer
Marge

Lisa
Bart
Maggie

10

O Border Layout =c=— 01 H
[Horth
Klaatu
Barada
Nikto
[west
[South
i
/1 Layouts.java
/*
Denonstrates sone basic |ayouts.
*/
i mport java.aw.*;
i mport javax.sw ng.*;
i mport java.util.?*;
i mport java.awt.event.*;
public class Layouts {
public static void main(String[] args) {
Io----

/1 1. Flow Layout

/1l Flow | ayout arranges Left-right top-bottom I|ike text
JFrame franel = new JFranme("Fl ow Layout");

JComponent content = (JConponent) franel. get Content Pane();
content. set Layout (new Fl owLayout ());

/1 Background color is a property of all components --
/1 here | it to white, so it |ooks better in the handouts
cont ent . set Backgr ound(Col or. white);

/1 Use add() to install conponents
content.add(new JLabel ("Hello World."));

cont ent. add(new JLabel (" Anot her Label ."));
content . add(new JLabel ("Kl aatu Barada N kto!"));

/1 Force the frame to size/layout its conponents
franel. pack();
franel. setVisible(true);

11

12

Iro----

/1 2. Box Layout

JFrame frame2 = new JFrane("Box Layout");

JConponent content2 = (JConmponent)frane2. get Cont ent Pane();
cont ent 2. set Backgr ound(Col or. white);

/1 The Box | ayout nmake a vertical arrangenent
cont ent 2. set Layout (new BoxLayout (content 2, BoxLayout.Y_AXIS));

/! add a few components
cont ent 2. add(new JLabel ("Honer"));
content 2. add(new JLabel (" Marge"));

/] add a little spacer
cont ent 2. add(Box. createVertical Strut (12));

cont ent 2. add(new JLabel ("Lisa"));
content 2. add(new JLabel ("Bart"));
content 2. add(new JLabel (" Maggi e"));

frame2. pack();
frane2. set Vi si bl e(true);

/1 3. Border Layout + nested box panel

JFrame franme3 = new JFrane("Border Layout");

JConponent content3 = (JConponent)frane3. get Cont ent Pane();
cont ent 3. set Backgr ound(Col or. white);

/1 Border | ayout
/1 (the 6's are for inter-conmponent spacing)
cont ent 3. set Layout (new Bor der Layout (6, 6));

/1 Add | abels around the edge

cont ent 3. add(new JLabel ("North"), BorderLayout.NORTH);
cont ent 3. add(new JLabel ("West"), BorderLayout.\WEST);
cont ent 3. add(new JLabel (" Sout h"), BorderLayout.SOUTH);

/1 Add a MyConponent in the center
cont ent 3. add(new MyConponent (200, 200), BorderLayout.CENTER);

/!l Create a little panel (box |ayout)

/1 with some labels. Nest it into the EAST

/1 (we'll use this strategy to arrange buttons

/1 around our main content)

JPanel panel = new JPanel ();

panel . set Layout (new BoxLayout (panel, BoxLayout.Y AXIS));
panel . add(new JLabel ("Kl aatu"));

panel . add(new JLabel (" Barada"));

panel . add(new JLabel ("N kto"));

cont ent 3. add(panel , Border Layout. EAST) ;

franme3. pack();
franme3. set Vi si bl e(true);

