
CS193j, Stanford Handout #10
Winter, 2001-02 Nick Parlante

Java 3

Time Example
Suppose you have a Time class that represents a time, such as "10:53 am"
(There's a simple Time.java among the starter files for hw1)
(See also the Date java library class)

Operations
What operations might the Time class expose?
Theme: expose things for the convenience of the client. Hide implementation

details.
-getHours()/getMinutes()/isAM() -- standard accessors
-setMinutes()/setHours()/setAM() -- these may need to "renormalize" the

data from the client, e.g. minutes to the range 0..59, to maintain the internal
correctness of the time object and its assumptions. This is an advantage of
making the client go through setter methods -- the object can control its
state.

-isBefore(Time) -- compare to another time: is the receiver before or equal to
the given time-shift(int hours, int minutes) -- shift the receiver by the given hours and
minutes. (internally handles messy wrap-around logic for hours and
minutes, midnight)

Implementation vs. Interface
Could implement as: int hours, int minutes, boolean am/pm
Could implement as: int minutesSinceMidnight

Give the illusion to the client of hours/minutes, but do internal logic just in
terms of minutes

The abstraction should be optimized to be convenient and understandable to the
client. The implementation should be optimized for easy implementation.

The hours/minutes representation may be most convenient for the client, but it is
not an easy represenation for computations.

2

OOP Part 2 — Inheritance
Arrange several related classes in a way to avoid duplication / promote code re-

use. (See the OOP Concepts handout)
OOP Hierarchy
Superclass / Subclass
Inheritance
Overriding
ISA -- the subclass ISA instance of the superclass -- it has all the properties that

instances of the superclass are supposed to have (and it has some additional
properties as well)

Inheritance Warning
Inheritance is a neat and appealing technology.
However, it is only usable in somewhat rare circumstances -- where you have

several very similar classes.
It is a common error for beginning OOP programmers to try to use inheritance

for everything.
Modularity may be less flashy, but it is incredibly common. Inheritance is rare,

but where it works, nothing else will do.

Horse/Zebra Style
Suppose you have a hierarhcy of animals, except the zebra was omitted and you

have been asked to add it in.
No: define the zebra from scratch
Yes: locate the Horse class. Introduce Zebra as a subclass of Horse

Zebra inherits 90% of its behavior (no coding required)
In the Zebra class, define the few things that are features of Zebras but not

Horses

Grad Variation
Suppose we want to add a Grad class based on the Student class -- Grad students

are like students, but with two differences...
* Years on thesis -- a grad has a count of the number of years worked on

thesis
- getStress() is different -- Grads are more stressed. Their stress is (2* the

Student stress) + yearsOnThesis

Student Inheritance
Student defined by int units
Grad is everything that a Student is + the idea of yearsOnThesis (yot)
"isa" relationship with its superclass -- Grad isa Student
Subclass has all the properties of its superclass + a few
Grad overrides getStress() with a specialized version
Grad (subclass) has more properties / is more constrained / more specific
Student (superclass) has fewer properties / is less constrained./ more general

3

Student/Grad Design Diagram
The following is an excellent sort of diagram to make early in the design to think

about the division of responsibility between a Superclass and its Subclass.
('•' = instance variable, '-' = method)

Student
 •units
 -ctor
 -get/set Units
 -getStres

Grad
 •yearsOnThesis
 -ctor
 -get/set YOT
 -getStres (override)

Student/Grad Memory Layout
Implementation detail: the ivars of the subclass are layered on top of the ivars of

the superclass
Result:: if you have a pointer to the base of an instance of the superclass (Grad),

you can treat it as if it were a superclass object (Student) and it just works since
the objects look the same from the bottom up.

units

pointer to
the base of
the object

Simple Inheritance Example
Student s = new Student(10);
Grad g = new Grad(10);
s.getStress(); // goes to Student.getStress()
g.getUnits(); // goes to Student.getUnits() -- INHERITANCE
g.getStress(); // goes to Grad.getStress() --OVERRIDING

Never Forget Class
In Java, no matter what code is being executed, the receiver is the same receiver

(even if the code is in a different class) and the receiver never forgets its class.
EG even getUnits() (Student class) executing on a Grad, remembers that the

receiver is a Grad

4

Semantics of "Student s;"
NO: "s points to a Student object"
YES: "s points to an object that responds to all the messages that Students

respond to"
YES: "s points to a Student, or a subclass of Student"

Simple Substitution Example
Subclass can be used in a context which call for the superclass
This works because of the ISA property -- Grad ISA Student
Therefore, a Grad type pointer may be stored in a Student type variable
Student s = new Student(10);
Grad g = new Grad(10);
s = g; // ok -- subclass may be used in place of superclass
// what operations are allowed on s?

Compile Time
Because of the substitution rule, the compile time and run time type systems

diverge.
The compile time type system is more loose -- not knowing the exact class of the

receiver.
e.g., with the following the compiler, knows that "s" points to a Student object

or a Grad object
void foo(Student s) {

// s points to Student or Grad -- don't know for sure
The compile time type system is used for error checking
Code is only allowed if the compiler can determine with 100% confidence that

the receiver does respond to the given message.

Run Time
In Java, the run time type system is exact -- the receiver knows exactly what class

it is.
The run time type system is used to resolve message sends (i.e.

"message/method resolution").

Substitution Code
Student s = new Student(10);
Grad g = new Grad(10);
s = g; // ok
s.getStress(); // ok -- goes to Grad.getStress() (overriding)
s.getUnits(); // ok -- goes to Student.getUnits (inheritance)
s.getYearsOnThesis(); // NO -- does not compile (s is compile time type

Student)

5

Inheritance Client Code
The compiler only allows message sends that are guaranteed to work, and the

compiler uses the compile-time types of variables in its estimations. The
programmer can put in casts to edit the compile-time types of expressions.

At run-time, the message-method resolution usees the run-time type of the
receiver, not the compile-time type -- this is a feature. Languages that use the
compile-time type for message resolution are too inflexible.

Student s = new Student(10);
Grad g = new Grad(15, 2);
Student x = null;

System.out.println("s " + s.getStress());
System.out.println("g " + g.getStress());

// Note how g responds to everthing s responds to
// with a combination of inheritance and overriding...
g.dropClass(3);
System.out.println("g " + g.getStress());

/*
 OUTPUT...

s 100
g 302
g 242

*/

// s.getYearsOnThesis(); // NO does not compile
g.getYearsOnThesis(); // ok

// Substitution rule -- subclass may play the role of superclass
x = g; // ok (this is allowed with no cast)

// At runtime, this goes to Grad.getStress()
// Point: message/method resolution uses the RT class of the receiver,
// not the CT class in the source code.
// This is essentially the objects-know-their-class rule at work.
x.getStress();

// g = x; // NO -- does not compile,
// substitution does not work that direction

// x.getYearsOnThesis(); // NO, does not compile

((Grad)x).getYearsOnThesis(); // work around with cast
// Ok, so long as x really does point to a Grad

6

Insomnia Example
Suppose we have an insomnia() method in the Student class that returns true of

the receiver is very stressed.
Question: how does this work if we send the insomnia() message to a Grad

object?
public boolean insomnia() {
return(getStress() > 100);

// Pops DOWN to Grad.getStress()
// if the receiver is a Grad
}

Client code...
Student s = new Student(...);
Grad g = new Grad(....);
s.insomnia(); // does the right thing
g.insomnia(); // does the right thing

g.insomnia() Series
Where does the code flow go when sending insomnia() to a Grad object
1. Student.insomnia()
2. Grad.getStress() // pop-down
3. Student.getStress() // the super.getStress() call in Grad.getStress

"Pop-Down" Rule
The receiver knows its class
The flow of control jumps around different classes
No matter where the code is executing, the receiver knows its class and does

message->method mapping correctly for each message send.
e.g. Receiver is the subclass (Grad), executing a method up in the superclass

(Student), a message send that Grad overrides will "pop-down" to the Grad
definition (getStress())

7

Grad.java
// Grad.java

/*
 Grad is a subclass of Student.
 Grad adds the state of yearsOnThesis.

 Grad overrides getStress() to provide a Grad specific version.
*/
public class Grad extends Student {

private int yearsOnThesis;

public Grad(int units, int yearsOnThesis) {
// NOTE "super" must be first if used --
// chains up to the superclass constructor
super(units);

this.yearsOnThesis = yearsOnThesis;
}

/*
 Grad stress is based on twice the Student stress
 plus an additional factor for the yearsOnThesis.

 NOTE: avoid code repetition between subclass/superclass
 at all costs -- that's why we use Student.getStress()
 for the core of our computation.
*/
public int getStress() {

// NOTE "super" still invokes message/method resolution
// but it starts the search one class higher up
// (there is no super.super)
int student = super.getStress();

return(student*2 + yearsOnThesis);
}

// Standard accessors
public void setYearsOnThesis(int yearsOnThesis) {

this.yearsOnThesis = yearsOnThesis;
}

public int getYearsOnThesis() {
return(yearsOnThesis);

}

8

/*
 Things to notice...

 -The ctor takes both Student and Grad state -- the Student state is passed up
 to the Student ctor by the first "super" line in the Grad ctor.

 -getStress() is a classic override. Note that it does not _repeat_ the code
 from Student.getStress(). It calls it using super, and fixes the result.
 The whole point of inheritance is to avoid code repetition.

 -Grad responds to every message that a Student responds to -- either
 a) inherited such as getUnits()
 b) overriden such as getStress()

 -Grad also esponds to things that Students do not,
 such as getYearsOnThesis().
*/

Inheritance / Notification Style
Here is an illustration of how all this inheritance stuff is actually used...
Suppose there is a Car class with go(), stop(), and turn() methods
Suppose there is an existing system of code that sends "notifications" to the car

over time: go(), stop(), go(), ...
You want to create your own car, but that turns differently...

Subclass off Car
Override the turn() method with your own definition

The existing system/car relationship with the methods go(), stop(), etc. continues
to work

A turn() notification will pop down to use your turn(), and then pop back up and
continue using the standard car code

Notification Style Results
Use this style as a way of integrating your code with library code -- subclass off a

library class, 90% inherit the standard behavior, and 10% override a few key
methods.

e.g. Servlets -- inherit the standard HTTP Servlet behavior and define custom
behavior in a few key method overrides.

