
CS193j, Stanford Handout #9
Winter, 2001-02 Nick Parlante

Java Tools and Debugging

Java On Unix
See the "java on unix" page in the java tools section off the course page. Everyone

will need to be able to compile and run on unix.
.cshrc setup

"which java" should yield /usr/pubsw/bin/java
"echo $CLASSPATH" should either be undefined, or will list directories and

.jar files that should include the current directory "."

Compile and Run on Unix
"javac *.java" -- compile all files in directory
"java MyClass arg1 arg2" -- run main() function in class MyClass (searches

current directory if CLASSPATH is empty or includes ".")
Note that GUI programs will throw a bunch of "font not found" warnings -- you

can ignore those. The program will, in fact, work fine.

CodeWarrior
Stanford has a site license for Codewarrior 7 Mac and PC. It should work on

MacOS X also. We may get a Linux version someday.
You should have some familiarity with the Unix tools, but using a real IDE is

quite handy.

/usr/class/cs108/bin -- utilities
Little unix utilities for common problems -- finding java sources, fixing EOLNs in

files, removing tilde files, running VNC.... see the README in the directory.
You can add the directory /usr/class/cs108/bin to your PATH in your .cshrc file

to access these utilities. (See the Java on Unix page for instructions)

Java Web Docs
http://java.sun.com/j2se/1.3/docs/api/index.html (linked from course page)
Click on the lower-left pane, and use your browser's search feature
Open things in new windows to avoid reloading

Java Sources
Note that the java sources are the property of Sun -- looking at them may limit

your ability to write a non-Sun "clean room" re-implementation of the java
libraries in the future.

The java sources contain the HTML text that was used to make the web docs
above.

Sometimes looking at the code itself gives insight -- e.g.
AbstractCollection.toString()

2

Debugging
Attitude
Mindset

It appears hopeless, but there is a logical structure in there. The evidence will
be obscure, but consistent in pointing to the guilty code.

Avoid "deer in the headlights" -- debugging is the state of mind that although
it appears impossible, you can sift through it. You cannot take on a passive
attitude.

Don't panic -- be methodical. Somehow the TA is able to do this, and they
don't know more about your code than you do.

Symptom -> Code
You observe a symptom -- bad output, an exception.
You track from the symptom backwards through the code path to the bug.
What method shows the symptom?
What is the state of its receiver?
What were the param values?

debugger vs. System.out.println()
Java debuggers are of uneven quality. Many programmers use

System.out.println() for everything.
Test your assumptions

If all the evidence points to the foo() method being wrong, but you are
positive that foo() is right, go look at foo() again anyway. Put in some more
printlns. Test your assumption.

Get Some Sleep
If your brain is worn out, you can't debug well. You become too fixed in your

assumptions to see what the evidence is trying to tell you. Often times the
next day, you will see the bug in 5 minutes.

Debugging Mechanics...

1. What does the exception say?
Cryptic

Exception printouts look a bit cryptic, but there's often actual info in them --
null pointer vs. array out of bounds.

2. What Method and line-number ?
What method execution produced the symptom?
What line in that method?
Map the symptom you observe to a line of code to look at
Look at that source code -- half the time the problem is right there. (in emacs, use

esc-x goto-line)
No line numbers

3

Usually, line numbers work even if you don't do anything special
If there are no line numbers, try compiling with javac -g *.java
Also, you can run without the runtime compiler with

"java -Xint MyClass"
Or run under jdb -- it prints the line number and exception (See the Java on

Unix page for jdb info)

3. What is the state of the receiver,
parameters?
The symptom is typically related to bad data -- either in the receiver or in the

parameters passed in.
Parameter values -- are they good?
Print receiver state -- toString

Look at all the ivars at the time of the exception.
Its handy to have a toString() utility that just dumps the state of an object to a

String for debugging
Before

What about the state a little upstream -- what was the state of the receiver
before this message? When did it go bad?

How did that happen?
How did the ivar get that way -- what state did the constructor init it to?

What methods changes that ivar? Put breakpoints or printlns in to see the
state change over time (especially easy if all changes to that ivar go through
a single setter method).

4. Comment Code Out / Mess With The
Code
Suppose you know the state of the receiver is bad, and you are trying to figure

out which code is messing it up. Commenting out calls to sections of code is a
very fast way to eliminate code from suspicion.

e.g. Suppose you have a draw program and the shapes are in a bad state. Is
the move code or the resize code? Comment out the resize and try it -- the
program is barely functional, but it's a quick way to decide that code is not
the source of the problem.

Be willing to dork your code around into absurd states to test a hypothesis.
e.g. Suppose you suspect the bug has to do with a case where there are many

foo objects with a width over 500. The standard code reads the foo objects
out of a file. To test the hypothesis, put a foo.width += 500 statement in the
file reading code. This line is not very logical for the proper functioning of
the program, but it's a very fast way to test the hypothesis.

