
CS193j, Stanford Handout #8
Winter, 2001-02 Nick Parlante

OOP Design 1
Here, we'll look at simple, elemental OOP design. Later, we'll look at the more
complex issues.

#1 — Encapsulation
The most basic rule for OOP design is to associate behavior with the object it
operates on. No reaching in: -- avoid reaching into an object to get its data to
perform an operation. The whole Message/Method system encourages the right
style. In OOP vocabulary, this is "encapsulation" -- each object maintains and
protects its own state independently. From a client point of view, to operate on
the state of an object, send the object a message (a request), and the object
operates on itself.

Example 1 - Wrong
This first example is bad code because it reaches into the Binky object data to
compute something. Typically you prevent this by making your instance
variables private:

// client side code
private int computeSum(Binky binky) {

int i;
int sum = 0;
for (i=0; i<binky.length; i++) { // NO -- reaching in

sum += binky.data[i]; // NO -- reaching in
}

return sum;
}

Example 2 - Wrong
This next wrong example follows the letter but not the spirit of OOP. Accessors
getLength() and getDatum() have been added to the Binky object, so we're not
accessing data directly, but it's not really OOP because such a major operation on
Binky data should be performed by the Binky on itself...

// client side code
private int computeSum(Binky binky) {

int i;
int sum = 0;
for (i=0; i<binky.getLength(); i++) { // NO -- external entity doing

sum += binky.getDatum(i); // too much work on object's data
}

return sum;
}



2

Example 3 - Right
If you find yourself doing the Foo operation on the data from an object, just
endow the class with the Foo capability, and it can do the operation on itself.
Notice how easy it is to write the code for computeSum() once it's been moved to
be a method in the Binky class. No argument is necessary since it's just the
receiver, and the instance variables are available with no further syntax. Move
the operation to the data.

// Give Binky the capability
// (this is a method in the Binky class)
public int computeSum() {

int i;
int sum = 0;
for (i=0; i<length; i++) {

sum += data[i];
}

return sum;
}

// Now on the client side we just ask the object to perform the operation
// on itself which is the way it should be!
{

Binky binky;

...
int sum = binky.computeSum();

}

Reality
Not all cases are quite this tidy. Sometimes an operation requires significant
access to data from two or more objects. In that case, you end up making it a
behavior of one object and pass in the other object as a parameter. (Comparison
operations always have this problem.) Almost always though, you can add some
helper behaviors to one of the objects so the other can interact with it while still
maintaining encapsulation.

3 Levels of Access
In C++ and Java the world actually divides into three: the receiver, the class of
the receiver, and everyone else. Ideally the receiver operates on itself. Slightly
worse but still allowed : another object in the same class performs the operation
on the receiver -- "sibling access". Sibling access is not quite as nice as having the
object operate on itself, but it is not terrible. Two objects in the same class
(siblings) have literally the same implementation code, so at least an object and
its sibling will have consistent code. Even if an ivar is declared "private", other
objects in the same class are allowed access. Having an object operate on itself is
the best. Having an object operate on a sibling is not quite as good, but is
allowed.



3

Everyone else

Siblings of receiver

Receiver

Advantages
Advantages of having objects operate on their own state...

• Methods are easier to write -- fewer parameters to keep track of, the
ivars are right there. After coding OOP for a while, you get fast at
writing behaviors that operate against their receiver. Somehow it
becomes more intuitive than writing functions, figuring out which
parameter do what, etc.

• Client code is also better -- send the request to the object, don't
worry about the implementation.

• Class independence -- can change the code in either client or
implementor class without breaking the other. The
message/request side is nice and separate from the
method/implementation side.

Drill Bits vs Holes
There's the old story of the drill bit salesperson who was much more successful
once they realized that their clients didn't want to talk about drill bits, the clients
wanted to talk about holes. By the same token, if you find yourself making
accessors for GetLength() and GetNthElement(), you have to think about what
your clients really wanted — probably something more like FindElement() or
WriteElements(). Think about what the client wanted to accomplish, not the
details and mechanism of doing the computation.

Client Orientation
The OOP abstraction exposed by an object should be designed to meet the client
needs. The messages should match the needs and vocabulary and conceptual
orientation of the client. This is quite different from just exposing the object
implementation. In fact, quite often, the implementation is hidden or heavily
disguised to meet the client orientation.


