
CS193j, Stanford Handout #2
Winter, 2001-02 Nick Parlante

Java Introduction

First, Course Info
Nick Parlante

nick.parlante@cs.stanford.edu
(650) 725-4727
Feel free to call or stop by -- often in the office M-F
Detailed office hours on the course page

Course: Java, OOP design, Java Libraries
Prerequisite: Experience in C -- we won't cover basic programming
Course Page http://www.stanford.edu/class/cs193j
Questions: cs193j@cs.stanford.edu
Readings

No required text, but you may want a book for reference
Lecture outlines, source code -- available in PDF off course page

Platform -- Java
Mostly platform independent
Codewarrior Java license for Mac and PC
Must test your work on 1.3 JVM on leland

Grading
4-5 Homeworks (60%) + 1 final exam (40%)
Must pass both the homeworks and the exam to pass the course

CR/NC Teams
People taking the class CR/NC may work in teams of 2 on each assignment if

they wish
Honor Code

See handout #1

Java Doc Links
A great deal of Java documentation is available online -- here's some links to get

you started
http://java.sun.com/docs/

lots of docs about Java.
http://java.sun.com/docs/books/tutorial/

Java tutorial -- includes separate tracks for many topics.
http://java.sun.com/j2se/1.3/docs/api/

The "API" section is a reference for the many built-in library classes (String,
ArrayList, ...)

http://www.bruceeckel.com/
Bruce Eckel's Book, Thinking in Java, in a free online form

http://www.afu.com/javafaq.html
The comp.lang.java FAQ -- maintained by Peter van der Linden

http://www.javaworld.com/
lots of Java articles

2

Java -- Buzzword Enabled
From the Sun Java whitepaper: "Java is a simple, object-oriented, distributed,

interpreted, robust, secure, architecture-neutral, portable, high-performance,
multi-threaded, and dynamic language."

Simple
Simpler than C++ -- no operator overloading
Mimics C/C++ syntax, operators, etc. where possible
To the programmer, Java's garbage collector (GC) memory model is much

simpler than C/C++

Object-Oriented
Java is fundamentally based on the OOP notions of classes and objects
Java uses a formal OOP type system that must be obeyed at compile-time and

run-time. This is helpful for larger projects, where the structure helps keep the
various parts consistent. Contrast to Perl, which as more of a quick-n-dirty feel.

Distributed / Network Oriented
Java is network friendly -- both in its portable, threaded nature, and because its

libraries support common network operations

Interpreted
Java bytecode is interpreted by the Java Virtual Machine on each platform

Robust / Secure
Java is very robust -- both vs. unintentional memory errors and vs. malicious

code such as viruses. Java makes a tradeoff of robustness vs. performance.
1. The JVM uses a verifier on each class at runtime to verify that it has the correct

structure
2. The JVM checks certain runtime operations, such as pointer and array access,

to make sure they are touching only the memory they should
3. The Security Manager can check which operations a particular piece of code is

allowed to do at runtime

Architecture Neutral / Portable
Java is designed to "Write Once Run Anywhere", and for the most part this

works. Not even a recompile is required -- a Java executable should work,
without change, on any Java enabled platform.

High-performance
Java performance has gotten a lot better. It can approach the speed of C -- say

within a factor of 2. However memory use and startup time are both
significantly worse than C, although those problems may be fixable.

3

Multi-Threaded
Java has a notion of concurrency wired right in to the language itself. This works

out more cleanly than languages where concurrency is bolted on after the fact.

Dynamic
Class and type information is kept around at runtime. This enables runtime

loading and inspection of code in a very flexible way.

Java Compiler Structure
Compile classes in .java files -- produce bytecode in .class files

Bytecode
A compiled class stored in a .class files or .jar file
Represent a computation in a portable way -- as PDF is to an image

Java Virtual Machine
Loads and runs the bytecode for a program + the library classes
The JVM runs the code with the various robustness/safety checks in place --

robustness vs. performance tradeoff

JITs and Hotspot
Just In Time compiler -- the JVM may compile the bytecode to native code at

runtime (with the robustness checks still in). (This is one reason why java
programs have slow startup times.)

The "hotspot" project tries to do a sophisticated job of which parts of the program
to compile. In some cases, hotspot can do a better job of optimization than a
C++ compiler, since hotpsot is playing with the code at runtime and so has
more information.

4

Java Lang + Its Libraries
The core java language is not that big
However, it is packaged with an enormous number of "library" or "off the shelf"

classes that solve common problems for you
e.g. String, ArrayList, HashMap, StringTokenizer, HTTPConnection, Date, ...

Java programmers are more productive in part because they have access to a
large set of standard, well documented library classes. Code re-use at last!

Java: Programmer Efficiency
Faster Development

Building an application in Java takes about 30% less time than in C or C++
Faster time to market

Memory errors
Memory errors largely disappear because of the safe pointers and garbage

collector. I suspect the lack of memory errors accounts for much of the
increased programmer productivity.

Libraries
Code re-use at last -- String, ArrayList, ... (C++ can also do this to an extent)

Java Is For Real
Java has a lot of hype, but much of it is deserved.
Java is very well matched for many modern problem

Using more memory and CPU time but less programmer time is an
increasingly appealing tradeoff.

Robustness and portability can be very useful features
I suspect we will be using some derivative of the Java language for a long time

