
CS193j, Stanford Handout #1
Winter, 2001-02 Nick Parlante

CS193j — Programming in Java

The Class
CS193J is a "Java as a second language" course, designed to introduce a skilled C
programmer to the object-oriented paradigm, the Java programming language,
and the built-in Java packages.

CS193j is an intermediate course for people with a basic programming
background. It is not for complete beginners -- people without significant prior
programming experience. Neither is it an advanced course appropriate only for
CS majors (those people should consider CS108, also offered this quarter).

Topics to be covered include object-oriented programming (classes, objects,
messaging, inheritance), Java language features (interfaces, exceptions, packages,
concurrency, garbage collection), the built-in packages (lang, util, io, networking,
graphics), understanding applications and applets, security and verification,
implementation and the Java virtual machine. The coursework will consist of
regular programming assignments and a final exam. By the end, you will have
explored the Java language and OOP design principles in solving a variety of
problems. The only way to truly learn a language, especially one as rich as Java,
is by writing programs, so do expect to invest time into your assignments in
order that you may successfully master the language and its built-in facilities.

The Student
The prerequisite for the class is programming and problem solving at the
CS106B/X level in C. Thus it is assumed you are proficient in C with a good
understanding of arrays, strings, pointers, and dynamic memory allocation and
have well-developed debugging skills. In addition, you should be comfortable
with recursion, you should be able to construct and manipulate linked data
structures (lists, queues, trees, graphs, etc.), you should be familiar with abstract
data types and you should have understanding of various algorithmic techniques
such as searching, sorting, and hashing. You will be expected to produce elegant,
well-decomposed, commented solutions as taught in the CS106's. We will
provide some basic style handouts to lower bound the level of polish we are
looking for.

2

Course Page
Being a hip, modern class, CS193j will have all sorts of material maintained at the
course page..

http://www.stanford.edu/class/cs193j/

If you are looking for anything having to do with CS193j, the course page will be
a good place to start. In particular, handouts, links to online resources, compiler
information, and homework materials will all be linked off the course page.

Instructor
• Nick Parlante

nick.parlante@cs.stanford.edu
http://www-cs-faculty.stanford.edu/~nick/
(650) 725-4727

Nick’s Office
Gates 190. On the first floor, facing the green Biology building.

The Quad

The Oval

Biology

Gates Computer Science

1st floor, B wing
Room #190

N

Nick’s Office hours:
The exact staff office hour scheduling will be published separately,
but as a general rule, I'm around and available much of the day
Mon-Fri. Feel free to call or stop by. My office hours are often empty,
so feel free to come by and get individual help (this is one of many
areas where shyness is not going to benefit your college experience).

Books
There are many, many Java books that more-or-less cover our topics. There is no
required text, but many people like to have a written text to refer to. Two good
choices are: Core Java, Vol 1 Fundamentals (in the Stanford bookstore), by
Horstmann, and Java 2: The Complete Reference, by Schildt. These are fine books,
and there are many other reasonable choices available, so you can follow your
personal preference. In any case, there will be much material to read in online
form (naturally, this will be linked off the course page).

3

Handouts
Often there will be some sort of outline or source code to go with a day's lecture.
These will be available at the course page in PDF format at least 60 minutes
before lecture. SCPD students: we send out handout #1 in paper form; please get
the others from the web page.

Questions: cs193j@cs.stanford.edu
Please send questions to the staff-collective email address cs193j@cs.stanford.edu.
We'll maintain FAQs on the course page for common questions. For debugging
questions, try to describe what you've done to narrow down where the bug
might be. Short questions work great by email, longer questions probably need to
be handled in office hours.

Java
CS193j uses Java. For the most part, this frees you to build on whatever platform
you wish that supports Java (Solaris, Windows, MacOS, MacOS X, Linux),
although you will need to turn in your work on the leland Unix systems since
that's where we do the grading. There are links on the course page explaining
how to set up the various compilers. You can use the "VNC" system to run things
on leland from elsewhere. On leland, VNC is installed in /usr/class/cs108/bin
along with some other handy utilities. You may use Java 1.3, Java 1.2, or Java 1.1
with Swing and the collections classes retrofitted. We will emphasize properly
structured, cross-platform code (nothing platform specific). We will test your
code against the current leland Java install, which is currently Java 1.3. There's a
section on the course page that explains how to run Java on the various
platforms. Stanford has a site license for CodeWarrior 7 which runs on Macs and
PCs and has a decent Java environment. See the course page for more
information.

Grading and Exams
The course grading is divided between 4-5 programming assignments, one
assigned every 1-2 weeks, and 1 final exam. The approximate grade breakdown
is assignments 60%, final exam 40%. To receive a passing grade, you must
complete passing work for both the programs and the exams. The final exam will
be Thu Mar 22nd, 3:30-6:30 pm. SCPD students may take the exam remotely.

CR/NC teams
The class is offered with either letter or CR/NC grading options. According to
university policy, a CR/NC student needs to earn a course grade of C- or better
to pass. Course requirements generally don't differ for students under the
CR/NC option, however, we will allow CR/NC students to work in a teams of
two on the programming assignments if they would like. Working with a partner
doesn't cut the work in half, but it does give a bit of relief and perhaps will make
the work a little more fun. This seems appropriate for those of you who are
taking this class not for a grade or requirement, but just to learn the material for
yourself.

4

If you choose to work with a partner, you may work with only one other student
per assignment and both students must be CR/NC. In between assignments, you
can switch partners or switch to working on your own. The exams will be taken
individually. You may try the newsgroup, su.class.cs193j, to find a partner if you
need one.

SCPD Students
The initial default due date for SCPD students and all other non in-lecture-in-
person-the-traditional-way students is the exact same deadline as everyone else.
The handouts and materials go up on the web at the same time planet wide, and
the digital videos are available soon after. TVI or other delayed SITN students
should work out a mutually acceptable arrangement with their TA to account for
their tape delay, once we assign the TA's. We usually shoot for around 3 days.

Late Submissions
Instead of having to ask for extensions on a catastrophe by catastrophe basis,
everyone gets three calendar “late days” to extend the due dates of any of the
weekly assignments (except possibly the last one). In keeping with the all
electronic, 24-hours a day theme of the post-Internet world, late days will be
measured in straight calendar days with no distinction for weekends or holidays.
All homework deadlines will be at midnight Pacific time.

These late days are intended to deal with the ordinary events of student life, both
frivolous and serious: 2 midterms that day, inadvertently spent all night playing
Quake, disk crash, med. school interview, illness, started way too late...After
your late days are used up, late work loses pretty quickly— about a half a letter
grade per day. Come and see me in person in exceptional circumstances. Note
that disk failure, network outages and other computer problems probably do not
represent exceptional occurrences. Hoard your late days “just in case,” or spend
them early and fly with no parachute— it's up to you.

In the grade database, every homework is recorded with both its score and the
number of days late it was turned in. The Great Spreadsheet Reckoning at the
end of the quarter figures out if you went over your late day budget.

Giving students their own late-day supply seems more fair since all the students
are on the same footing. However it means you now need to make your own
decisions about when to use a late day, and when to just turn in what you have.
The late days should allow you to do a better job and hopefully learn more in the
cases where your schedule gets disrupted. However, three late days do not
provide too large a cushion. You should plan to finish your homeworks on time
and reserve the late-days for real problems.

Honor Code
You are free to discuss ideas and problem approaches with others, but all the
work you hand in should be your own creation (or the creation of your team for
a team project). In particular, sharing or copying code is not OK. If you feel a
particular bit of collaboration may have crossed the line, just clearly cite what

5

help you got and from whom in your project's Readme. You can never get in
Honor Code trouble if the help is clearly credited.

There are tools we may use that do an extremely good job of finding plagiarism
within the submissions. Also, I am very tired of having students cry in my office,
so don't do something we'll all regret.

If we are using the Foo module, and you find the key 8 lines in the docs or in a
book that describe how to call the Foo module best, it's fine to use those lines
without comment in your Readme. Using OOP libraries is filled with episodes
like that. If I have asked you to implement the Bar module, copying the 200 lines
you found that implements Bar is not ok.

Schedule
A rough outline to give you an idea of the topics we are likely to cover —expect
adjustments and changes as the quarter develops. We start with fundamental
Java structures and the OOP paradigm for the first few weeks, followed by 2
weeks of GUI programming. After that, the topics will vary a little more
depending on interest and how things are going, but we will certainly get
through concurrency, I/O, and basic networking.

Week
Topics

1 Introduction, Java syntax, simple language built-ins

2 Basic OOP: class, object, message, method, constructors, access
control, overloading

3 More objects: inheritance, overriding, polymorphism, class
variables and methods, abstract base classes, OOP design,
interfaces, class objects, inner classes, packages

4 Finish basic Java and OOP. Start Swing GUIs. Components,
drawing, layouts, graphics.

5 Listeners, buttons, mouse tracking.

6 Finish GUIs. Start threads and concurrency. Threads, critical
sections, synchronization.

7 Finish Threads. Start I/O, streams, networking.

8 Finish networking.

9 Misc advanced topics, such as XML, VM implementation, and
performance techniques

10 More advanced topics.

11 Final Exam: Thu Mar 22, 3:30-6:30 pm

