
CS148 Homework 5

Homework Due: Aug 4th (Friday) 12PM - 2PM or 5PM-7PM

0.1 Assignment Format

This assignment has 3 TODO s that are covered within the first few pages of the document. The
rest of the handout consists of instructional tutorials. The TODOs are a mix of coding and Blender
GUI exercises.

0.2 Collaboration Policy and Office Hours

All policies from here on are the same as they were for HW1. See the HW1 document for details.

Quiz 4

The fith and last quiz will be held in conjunction with the live grading on Friday, Aug 4th.
See the FAQ post on Ed for more details on the live grading sessions. You will be randomly
asked one of these questions:

• What concerns may come up if we were to use Explicit (Forward) Euler to evaluate
the equations of motion when updating the state of a physical system? How do these
issues compare to those of Implicit (Backward) Euler?

• What is the difference between the Lagrangian fluid simulation approach vs. the Eule-
rian fluid simulation approach? What is the advantage of combining both approaches?

• How are springs relevant to cloth simulation? Describe the three types of springs that
we need to construct the simplest cloth model.

• How can we force a collision in our physical simulation to be inelastic vs. completely
elastic? How can we simplify the problem of modeling a 3D collision into a 1D problem?

• Describe one technique for generating the inbetween frames of a scene in motion given
a set of manually crafted keyframes. Given a bunch of frames of a scene in motion,
how do we ray trace motion blur?

1 Assignment

1.1 TODO 1 : Implement global illumination (for color bleeding).

Your task this TODO is to adapt the simple ray tracer from HW3 from using direct illumination to
using global illumination for more natural lighting. To demonstrate the effect of global illumination,
we will apply the simple ray tracer to the classic Cornell box scene.

We’ve already created the scene for you in Blender and have set up the code infrastructure to
access information from the scene using Blender’s Python API. You can find the scene and
code all in this .blend file. Like in HW3, you will need to fill in a section of code that is further
elaborated below. Please start this part early! Depending on your computer hardware,

1

https://edstem.org/us/courses/40954/discussion/3222788
https://web.stanford.edu/class/cs148/hws/hw5/cs148-hw5.blend


the final image can take up to an hour to render! So plan ahead and give yourself
enough time!

To run the code, you will need to run the simpleRT UIpanels script first every time you launch

Blender (like in HW3) before running simpleRT plugin . You should try launching Blender from
the command line as you did in HW3, since the starter code comes with a function that prints out
the estimated wait time to the command line for how long the render will take to finish. Rendering
the scene with the starter code should give you the following image:

Let’s take a look at what the existing code already does:

1. Scroll through the code that makes up the RT trace ray function, and you’ll see a complete
implementation of HW3 with one key addition – from lines 63 to 76, there is an implemen-
tation of area lights that we did not have you do in HW3. Notice how the area light code
uses randomness to compute or sample a point on the area light. As we discussed in lecture,
we can model an area light as a collection of point lights, and when we ray trace, we pick
random points on the area light to which we shoot our shadow rays.

2. To understand how the area lights are sampled in code, scroll to lines 174 to 202 – notice the
triple for-loop starting with a loop over the number of samples. The naive way to implement
sampling with ray tracing is to include the loop over every pixel of our image plane within
another loop over every sample. For each sample, we ray trace the scene. As we ray trace,
anything in the scene that requires sampling will involve some degree of randomness – in the
case of area lights, we pick a random point on the area light to shoot our shadow rays.

2



Suppose we have s samples – then this procedure gives us s ray traced scenes, each with
their own degree of randomness for the area light shadows. If we average all these ray traced
scenes – which is what line 196 is doing with a running average (using a “buffer” variable to
store the average) – then we will get the intended soft shadow effect that area lights naturally
cause in real life.

3. Notice on the lower-right of the GUI we have the samples count set to 4. So our image is the
result of averaging only 4 randomly sampled ray traced scenes, hence why our shadows look
so noisy. If we were to increase the number of samples, then we will eventually get rid of the
noise for more solid looking shadows. For the purposes of doing this HW though, you’ll want
the sample count relatively low so that Blender doesn’t take forever while you’re debugging.

4. You might notice parts of the code referring to “Corput”, short for Van der Corput. We’re not
going to cover it in this class, but the Van der Corput sequence is basically a series of numbers
that lead to a more efficient sampling technique, allowing our code to converge faster. In the
case of area light sampling, converging faster means we take fewer samples to get more solid
looking shadows.

The idea is that we vary the point through which we shoot of our camera rays – we don’t
always simply shoot the camera rays from the camera position through the center of each
pixel. Instead, notice how lines 184-186 offset our ray away from the center of the pixel by
some Corput factors. It turns out that by doing these offsets, we will take fewer samples to
get a more complete image. Feel free to look it up if you’re interested! As a fun fact, Blender
Cycles uses a similar technique, though it uses what’s called the Sobol sequence instead of
the Van der Corput sequence.

The rendered image so far has “dead” black shadows, i.e. the colors from the red and green
walls do not ”bleed” onto the cubes. This is because we only have direct diffuse and specular, i.e.
the diffuse and specular rays stop once they hit an object. In reality, the object receives light from
not only light sources, but also from other objects in the scene. You have heard of this phenomenon
as color bleeding from lecture.

To mimic real-world lighting, we need to add more bounces for the rays to achieve global
illumination. We will do so for the diffuse rays in this HW by giving them recursive bounces to
implement the scattering procedure we discussed in lecture. We will ignore global illumination for
the specular component to keep the HW within reasonable length.

Find the TODO in the provided code, then:

1. First, check if depth > 0 . Similar to reflection and transmission rays, we only shoot recursive
rays when the recursive depth is greater than 0. Only proceed with the next steps if this true.

2. For the purposes of computing the recursive ray direction, we need to first establish a local
coordinate system with the normal vector at the intersection point as the z-axis. That is, we
need to find a pair of x and y axes so that the z-axis becomes hit norm .

For the x-axis, we will make it a unit vector orthogonal to the normal. Start by initializing
this vector to an initial guess of (0,0,1). Now, if (0,0,1) is too close to the normal, then
change it to (0,1,0) instead. Two vectors are “too close” if they are almost parallel, i.e. the
magnitude of their dot product is close to 1. (Self-check: do you know why? Ask in office
hours if you’re not sure!)

We then compute the normal-direction component of x, which can be computed as x · n ∗ n
where x and n are the x and normal vectors respectively. Essentially, this is just a dot

3



product of the x and normal vectors, then a component-wise multiplication with the normal
vector. Subtract the result from the x vector to make it orthogonal (aka perpendicular) to
the normal, then normalize x. Some of you may recognize this process as the Gram Schmit
orthogonalization technique from linear algebra.

The y vector can be obtained via the cross product of the x vector and the normal. Python
has a .cross() function.

3. Also for the purposes of computing the recursive ray direction, we need to sample a hemisphere
as discussed in lecture when we introduced the idea of scattering rays. We first orientate this
hemisphere at (0, 0, 1). Imagine the top half of a sphere centered at the origin of the xyz-axis,
where up is positive z. We want to randomly pick a vector direction along this hemisphere.

Mathematically, we can express a point on the hemisphere as [sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)],
with θ ∈ [0, π/2), ϕ ∈ [0, 2π). We uniformly sample on the hemisphere surface by making
cos(θ) a uniform variable between 0 and 1.

Computationally, we do this by first creating two random variables r1 and r2 between 0
and 1, and let r1 be cos(θ) and r2 ∗ 2 ∗ π be ϕ. From here, you can simply plug these
values appropriately into the above formula for a point on the hemisphere (remember that
sin2(θ) + cos2(θ) = 1). Since the hemisphere is centered at (0,0,0), this point is also a ray
direction. (Self-Check: do you know why? Ask in office hours if you’re not sure!)

4. The ray direction that you computed from the previous step is within some abstract local space
of a hemisphere, and thus needs to be transformed into world space to actually be used. To
do this, we use the coordinate system computed in Step 2 to determine a matrix transform.
This transform will take the ray from this abstract hemisphere and place it alongside the
normal of our object in world space.

Let x, y, n be the coordinate system you computed in Step 2. Then to form the necessary
matrix transform in Python, you can do:

mat transform = Matrix()

mat transform[0][0:3] = x

mat transform[1][0:3] = y

mat transform[2][0:3] = n

mat transform.transpose()

Use this matrix to transform your ray result from Step 3.

5. Finally, recursively trace the ray from Step 4 as you did for the reflection and transmission
rays from HW3, remembering to take into account self-occlusion. Store the result as the
indirect diffuse color. This color needs to be scaled by r1 to account for face orientation as
well as diffuse color to account for absorption. Add the final result to color .

After finishing the above steps, your render should look similar to the following. When you
think you have your code correct, render your final image at 480x480 100% resolution with
16 samples and a depth of 3. This may take up to an hour or more. Please save this
render for grading.

Show us: (2 pt) The render as described above.

4



In case you are curious, this is how the scene from HW3 looks if rendered with the completed
global illumination code. Notice the softer shadows and color bleeding. You do not need to generate
this image yourself.

5



1.2 TODO 2 : Render a scene with geometry from a fluid or cloth simulation.

In lecture, we talked about both fluid simulation and cloth simulation. In this PDF, you’ll find
tutorials below on how to set up simple examples of both in Blender. For the purposes of grading,
pick either fluid or cloth simulation (or both if you really want!) and use it to generate geometry
that you then place into a scene with appropriate lighting and materials (ideally the scene(s) that
you generated last HW and are building for your final project).

Show us: (2 pt) A ray traced image using Blender Cycles of your own scene that has
geometry generated from a fluid or cloth simulation (or both!) with appropriate looking
lighting and materials.

1.3 TODO 3 : Render a scene using an advanced feature of Blender Cycles.

In lecture, we talked about how we would implement depth of field and motion blur, and later in
the class, we’ll go over how to implement volume rendering. Each of these phenomenon can be
done in the Blender GUI with a few simple button clicks. You can find the respective tutorials
further below in this PDF. Pick one of these (or multiple if you want!) to add to a scene that has
a non-trivial arrangement of geometry, lighting, and materials.

NOTE: While we haven’t discussed the theory of how we model and implement volume rendering
and will not until after this HW is due, you don’t actually need to know those details to enable
volume rendering in Blender. For now, if you are interested in using volume rendering for your
final project, then take the time to experiment with the Blender GUI options. We will talk about
what’s going on under the hood later.

Show us: (1 pt) A ray traced image using Blender Cycles of your own scene (with non-
trivial geometry, lighting, and materials) that has one (or multiple) of depth of field,
motion blur, and volume rendering enabled.

2 Creating Geometry via Fluid Simulation

Blender provides a relatively easy-to-use interface for generating workable meshes from fluid simu-
lation(s). Let’s try it out with a simple example. First, taking the default Blender scene:

• Scale the default cube to enlarge it. This large cube will become our fluid domain.

• Add a smaller cube mesh inside the default cube. This small cube will act as our collision
object.

• Add an UV sphere mesh above the smaller cube and inside the outer cube. This sphere will
contain our liquid that gets simulated in our fluid domain.

It may help to switch to wireframe view in the Viewport toolbar when setting this up. See Figure
1 for a visual of the full setup.

6



Figure 1

Start by selecting the sphere, then:

• Click on the Physics Properties panel of the Properties Editor (#2 in Figure 1) to access
the physics options.

• Click on the Fluid option (#3 in Figure 1).

• Click on the Type dropdown menu and select Flow (#4 in Figure 1).

• Click on the Flow Type dropdown menu and select Liquid (#5 in Figure 1).

• Click on the Flow Behavior dropdown menu and select Geometry (#5 in Figure 1).

This sets up the sphere to be a giant collection of liquid particles. The Geometry option we
set at the end tells Blender to have these liquid particles act as geometry when interacting with
other objects in the scene (i.e. they will behave like actual mass when colliding with objects).
In comparison, the Inflow and Outflow options will continuously add or delete fluid particles
during the simulation, with the inflow simulating a running faucet, and the outflow simulating a
drain with fluid disappearing upon interacting with the world.

Now, let’s add a collision object to make the simulation more interesting. Select the smaller
cube, then:

• Click on the Physics Properties panel of the Properties Editor.

• Click on the Fluid option.

7



• Click on the Type dropdown menu and select Effector (#1 in Figure 2).

• Click on the Effector Type dropdown menu and select Collision (#2 in Figure 2).

This sets up the cube to be an object that the sphere of fluid will collide with as it falls down in
our simulation.

Figure 2

Finally, we need to set up the last cube in the scene. Select the large cube, then:

• Click on the Physics Properties panel of the Properties Editor.

• Click on the Fluid option.

• Click on the Type dropdown menu and select Domain to make this cube our fluid domain
(#1 in Figure 3).

• Click on the Domain Type dropdown menu and select Liquid to tell Blender that this fluid
domain will be used for simulating liquids (#2 in Figure 3).

This sets up the large cube to have a gravity field that will act on any liquid objects within.
This includes the sphere of liquid, but not the collision cube. This means that when we run the
simulation, gravity in our fluid domain will cause motion for the sphere of liquid and make it fall
along the negative z-axis. But, the collision cube will stay in place. However, the sphere of liquid
and the collision cube will interact, because we set the cube to be a collision object.

8



Figure 3

To actually run our fluid simulation, we need to set a few more parameters:

• Scroll down further in the Physics Properties panel of the large cube that we set to be our
fluid domain.

• Set the Cache folder (#1 in Figure 4) to a folder where you want Blender to cache or
temporarily save the files needed to model this fluid simulation.

• Set the Type for the simulation to All to tell Blender to generate geometry for all frames
of the simulation (#2 in Figure 4).

• Check the Mesh checkbox to tell Blender to explicitly generate mesh geometry for the fluid
simulation (#3 in Figure 4).

• Set the final End Frame of your fluid simulation in both the Properties editor and the

Timeline Editor at the bottom of the Blender interface (#4 in Figure 4).

• Click Bake All when you’re ready to generate your fluid simulation (#5 in Figure 4). It
may take a few seconds for Blender to finish computing. There should be a progress bar at
the bottom.

9



Figure 4

To see your fluid simulation in action, move the Timeline Editor at the bottom of the Blender
interface up until you see the blue line clearly (see Figure 5). You’ll see a timeline starting at 1
and ending at the End Frame you set earlier. You can scrub through the timeline by clicking and
dragging the blue line to see the fluid simulation at different frames. For instance, Figure 5 shows
us looking at the 50th frame of our simulation of 100 frames.

You may want to switch to solid view in the Viewport toolbar to get a better sense of the
geometry of your fluid. If you want to redo your fluid simulation with a different set up, then you
need to first delete the cache files for the current simulation (see Figure 5) before modifying your
scene.

When you find a frame in your simulation that you’re happy with, you can export all the
geometry in that frame as an .obj mesh. Simply use the File → Export option. Then, you can
import that same .obj into your actual scene and work with it like any other geometry. For instance,
in Figure 6, we show how we can transform the generated liquid mesh just like any other object.
You can also add materials, textures, etc to your liquid mesh.

For more info on the parameters and the various options that Blender provides for fluid simula-
tion, see their official manual. This Youtube tutorial on using the “Quick Fluid” option in Blender
may also be useful, especially for finding an appropriate material to give your water (in this case,
the glass BSDF).

10

https://docs.blender.org/manual/en/latest/physics/fluid/index.html
https://www.youtube.com/watch?v=eRgH0EJ7fNo


Figure 5

Figure 6

11



3 Creating Geometry via Cloth Simulation

Blender also provides a straightforward interface for deforming meshes with cloth simulation(s).
Let’s see with a simple example. Create a new scene, delete the default cube, and add a plane
mesh plus the built-in Monkey mesh. Position the plane above the monkey head (see Figure 7)
The plane mesh will become our cloth in our cloth simulation, and we’ll have it collide with the
monkey head.

Select the plane, then:

• Go into Edit Mode , then Modifier Properties in the Properties Editor (#1 in Figure 7).

• Click Add Modifier and add a Subdivision Surface modifier to allow us to subdivide the
plane into a finer grid.

• In the modifier options, click Simple to use Blender’s simple subdivision algorithm, which
doesn’t round out the edges of our plane (#2 in Figure 7).

• Right click the plane and click Subdivide . This will bring up a Subdivide control panel in
the bottom left (#3 in Figure 7).

• Change the Number of Cuts to 50 to make the plane a 50x50 grid of squares.

Figure 7

Now, we need to set the plane to act as a cloth object and the monkey head to act as a collision
object.

12



• Select the plane (you want to go back to Object Mode ), then click on the Physics Properties

panel of the Properties Editor. Select the Cloth option. This tells Blender to treat our plane
as a network of particles and springs to model the physics of a piece of cloth.

• Select the monkey head, then click on the Physics Properties panel of the Properties Editor.

Select the Collision option. This tells Blender to have our monkey head interact with any
objects that collide with it.

Figure 8

To see your cloth simultion in action, move the Timeline Editor at the bottom of the Blender
interface up until you see the blue line clearly (see Figure 9). You’ll see a timeline starting at 1 and
ending at 250 (you can change this to another number like you did with the fluid simulation). You
can scrub through the timeline by clicking and dragging the blue line to see the cloth simulation at
different frames. For instance, Figure 9 shows us looking at the 31st frame of our cloth simulation.

To get a better sense of how your deformed plane looks like as a cloth, you can turn on
Shade Smooth when right-clicking it in Object Mode . Make sure to change the Render Engine

to Cycles for ray tracing. Then click the cycles render preview on the viewport toolbar (see Figure
9).

When you find a frame in your simulation that you’re happy with, you can export all the
geometry in that frame as an .obj mesh. Simply use the File → Export option as usual. Then,
you can import that same .obj into your scene and work with it like any other geometry.

For more info on the parameters and the various options that Blender provides for cloth simu-
lation, see their official manual. You may also find this quick curtain tutorial useful in combination
with this curtain plus wind simulation tutorial.

13

https://docs.blender.org/manual/en/latest/physics/cloth/index.html
https://www.youtube.com/watch?v=bmAAgW1mgsI
https://www.youtube.com/watch?v=7hjXofODymI


Figure 9

4 Motion Blur in Blender

Blender provides a very simple way to set up and ray trace motion blur. Let’s take a look with
a simple example. First, taking the default Blender scene:

14



• Translate the cube to some location that you want to act as its starting point.

• Move the Timeline Editor at the bottom of the Blender interface up until you see the blue
line clearly (see Figure 10).

• Right click the cube and click Insert Keyframe... (see Figure 10), then click Location (see
Figure 11). This will mark the current scene as our first position in the timeline and also tell
Blender that we would like to interpolate location aka position values for an animation.

• Move the blue line in the Timeline Editor to a later frame like frame 10.

• Go back and translate the cube to another location that you want to act its next position.

• Then, using the same steps as above, insert a new location keyframe.

Figure 10

15



Figure 11

Now, if you scrub through the timeline by clicking and dragging the blue line from frame 1 to
frame 10, you’ll see your cube move smoothly from its initial position to its next position. Figure 12
shows our example with the cube at frame 7 of the animation and its interpolated position values.

To have Blender ray trace your scene with motion blur, first go to Render Properties as usual

to change the Render Engine to Cycles for ray tracing. Then scroll down in this Properties Editor

tab to find the Motion Blur checkbox (see Figure 13). Just check the box, and Blender will do
motion blur! To see, pick a frame in the middle of the animation (e.g. frame 7 of 10 in the timeline)
and render your scene as an image. You should see something like that in Figure 13 pop up in your
Blender render window.

If you ever want to remove all the animation data that you created for the motion blur, then
you can do so by selecting all the keyframes in the Timeline Editor and deleting them (right-click

→ Delete Keyframes ). Alternatively, you can select your motion blurred object (e.g. the cube)

and press F3 to pull up the Menu Search , then type Clear Keyframes .

16



Figure 12

Figure 13

17



5 Depth of Field in Blender

Blender provides a very simple way to set up and
ray trace depth of field. Let’s take a look with
a simple example. Open this .blend file contain-
ing the Cornell Box scene. Select the Camera in

the Scene Collection in the upper-right of the inter-

face. Then go to the camera’s Object Data Properties

in the Properties Editor . Click the checkbox for

Depth of Field , and set the Focus Object to the

glass sphere . This will make our depth of field focus
on the right-most sphere.

Try rendering the scene (or viewing it in the render
preview) with and without this edit to see the effect of
depth of field. Also try playing around with different val-
ues of F-Stop to get a feel for how it affects the strength
of the blur. Lower values will increase blur, while higher
values make the image more clear overall.

6 Volume Rendering in Blender

Volume rendering is an advanced technique for achieving effects that cannot be represented by
surface meshes alone. More specifically, volume rendering is designed to render volumetric objects
like smoke, fire, fog, and clouds. We will try out Blender’s volume rendering capabilities with a
simple fog example. For more info on all the options that Blender has to offer for volume rendering,
see its manual on volumetric effects (It’s for an older version of Blender, but should still be relevant).

To set up our fog example, create a new default scene and enlarge our default cube. Then:

• Go to Material Properties in the Properties Editor (#1 in Figure 14).

• Click on the Surface option (#2 in Figure 14), then Remove or Disconnect (#3 in Figure
14) the default Principled BSDF material.

• Scroll down to the Volume options (#1 in Figure 15).

• Add a Principled Volume in the Volume option.

• Then, set the Density (of our fog) to 0.2 (#2 in Figure 15)

• Add another cube inside our enlarged cube. You may want to switch to wireframe view when
doing this.

18

https://web.stanford.edu/class/cs148/hws/hw5/cornell_box.blend
https://docs.blender.org/manual/en/2.79/render/blender_render/materials/special_effects/volume.html


Figure 14

Figure 15

19



Set Blender to Cycles and toggle on the render preview. You should see a fog like effect inside the
outer cube surrounding your inner cube. Render the image to see something similar to Figure 16.

Figure 16

Try adding a fog effect to the Cornell Box scene from the previous section – it results in a
pretty interesting visual phenomena. First, we need to surround the entire Cornell Box scene with
a volumetric cube. You can do this by adding a new cube, translating it to (−2.75, 2.75, 2.75), and
scaling all its dimensions by 4. When adding the material, you will have to create a New material
first. When you render the Cornell Box scene with fog, you might notice that the shape of the light
becomes visible for reasons we will discuss later in lecture!

20


	Assignment Format
	Collaboration Policy and Office Hours
	Assignment
	c1c3TODO 1: Implement global illumination (for color bleeding).
	c1c3TODO 2: Render a scene with geometry from a fluid or cloth simulation.
	c1c3TODO 3: Render a scene using an advanced feature of Blender Cycles.

	Creating Geometry via Fluid Simulation
	Creating Geometry via Cloth Simulation
	Motion Blur in Blender
	Depth of Field in Blender
	Volume Rendering in Blender

