
CS143 Final
Spring 2024

• Please read all instructions (including these) carefully.

• There are 5 questions on the exam, some with multiple parts. You have 180 minutes
to work on the exam.

• The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason other than to
access the class webpage.

• Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

• Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. You may get as few as 0 points for a question if
your solution is far more complicated than necessary. Partial solutions will be graded
for partial credit.

SUNET ID:

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points
1 10
2 25
3 25
4 20
5 20

TOTAL 100

1. Operational Semantics

In Cool, it is a fatal runtime error to dispatch on a void value. We will add a void-propagating
operator ?. that acts like a normal method dispatch on non-void values, but produces a
void value when applied to a void target.

Examples of new expressions are as follows:

e0?.f(e1, ..., en)

The void-propagating operator applied to a function call is semantically equivalent to the
following code:

let v <- e0 in
if isvoid v then

void -- a void value of same type as the other branch
else

v.f(e1, ..., en)
fi

(a) Below is the operational semantics for regular dispatch. The line v0 = X(. . .) implies
that v0 is not void. How does this rule need to be changed for the void-propagating
operator applied to a function call, for the case where e0 does not evaluate to void?

so, S1, E ⊢ e1 7→ v1, S2
so, S2, E ⊢ e2 7→ v2, S3
...
so, Sn, E ⊢ en 7→ vn, Sn+1
so, Sn+1, E ⊢ e0 7→ v0, Sn+2
v0 = X(a1 = la1 , . . . , am = lam)
implementation(X, f) = (x1, . . . , xn, en+1)
lxi

= newloc(Sn+2), for i = 1 . . . n and each lxi
is distinct

Sn+3 = Sn+2[v1/lx1 , . . . , vn/lxn]
v0, Sn+3, [a1 : la1 , . . . , am : lam , x1 : lx1 , . . . , xn : lxn] ⊢ en+1 7→ vn+1, Sn+4

so, S1, E ⊢ e0.f(e1, . . . , en) 7→ vn+1, Sn+4

Answer:

Yes, we must evaluate e0 first and use the resulting store for the evaluation of the
method’s actual arguments. We must also change e0.f(e1, . . . , en) to e0?.f(e1, . . . , en)
in the conclusion (below the horizontal bar).

(b) Give the operational semantics rule for the void-propagating operator for the case
where e0 evaluates to void.

Answer:

so, S1, E ⊢ e0 7→ void, S2

so, S1, E ⊢ e0?.f(e1, . . . , en) 7→ void, S2

2. Code Generation

We can remove the use of the frame pointer (FP) from the stack machine design we gave
in class. Since the offset of the stack pointer (SP) from the activation record is statically
known at every point in the code generator, we can reference temporary values using offsets
from the stack pointer.

Consider the Cool code and corresponding assembly on the next page. The assembly is
generated via a simple stack machine where the expression add(r1,r2) adds the Int objects
referenced by r1 and r2 and stores a reference to the result in a0.

Your task is to fill in the blank targets of the load and store instructions on to reference the
correct temporaries. You must follow the stack machine rules, so if the same value is stored
in multiple places you must choose the one that the stack machine would use.

class Main {
f(x: Object): Int {

1 + case x of
i: Int => let y: Int <- 1 in y + i;
s: String => {

s <- "hello";
1 + s.length()

};
esac

};
};

Main.f:
 addiu sp sp -8
 sw $s0 8($sp)
 sw $ra 4($sp)
 lw $a0$ int_const1
 sw $a0 ($sp)
 addiu sp sp -4
 lw $a0
 lw $t0 ($a0) # get type tag
 sw $a0 ($sp)
 addiu $sp $sp -4
 # branch if not Int type
 bne $t0 INT_TAG label0
 lw $a0$ int_const1
 sw $a0 ($sp)
 addiu $sp $sp -4
 lw $a0
 sw $a0 ($sp)
 addiu $sp $sp -4
 lw $a0

 lw $t0
 add($a0, $t0)
 addiu sp $sp 4
 addiu sp $sp 4
 b label2

 label0:
 # branch if not String type
 bne $t0 STR_TAG label1
 lw $a0 str_const0
 sw $a0
 lw $a0 int_const1
 sw $a0 ($sp)
 addiu sp sp -4
 lw $a0
 jal String.length
 lw $t0
 add($a0, $t0)
 addiu $sp $sp 4
 b label2
 label1:
 jal case_abort
 label2:
 addiu $sp $sp 4
 lw $t0
 add($a0, $t0)
 addiu $sp $sp 4
 lw $ra 4($sp)
 lw $s0 8($sp)
 addiu $sp $sp 8

16($sp

4($sp

12($s

4($sp)

4($sp

8($sp

4($sp)

4($sp

3. Language Design and Type Checking

We will extend the COOL language with the concept of arrays. Arrays in cool are fixed-
length mutable sequences. Arrays are constructed by a comma-separated list of expressions
surrounded by square brackets, e.g., [1, x, 42]. Arrays can be concatenated using the
syntax array1 + array2, which produces a new array with the values of array1 followed
by the values of array2. Finally, arrays can be indexed using the syntax array1[3] which
accesses the fourth element of of array1.

The array [T1, T2, . . ., Tn] has the static type [T] where T is the least upper bound of
the array element types T1, T2, . . ., Tn.

The following extension to the Cool CFG adds array construction and indexing expressions:

expr ::= . . .

| [expr J, expr K∗]
| expr [expr]

(a) Give type checking rules for constructing arrays [Array], indexing into arrays [Array-
Index], and concatenating two arrays [Array-Concat]. You do not need to handle
invalid array accesses in your type rules.

Answer:

O, M, C ⊢ e1 : T1
O, M, C ⊢ e2 : T2

...
O, M, C ⊢ en : Tn

T = ⊔
1≤i≤n Ti

[Array]
O, M, C ⊢ [e1, e2, . . . en] : [T]

O, M, C ⊢ e1 : [T1]
O, M, C ⊢ e2 : Int

[Array-Index]
O, M, C ⊢ e1[e2] : T1

O, M, C ⊢ e1 : [T1]
O, M, C ⊢ e2 : [T2]

T = T1 ⊔ T2 [Array-Concat]
O, M, C ⊢ e1 + e2 : [T]

(b) Is array sub-typing sound? That is, if T1 ≤ T2, would it be sound to say the list type
[T1] ≤ [T2]? If it is sound, please provide an explanation as to why. If it is not sound,
please provide an example where list subtyping would fail.
In your explanation, you may use a COOL program with the following class hierarchy
to illustrate your point:

Game

BoardGame

Chess

VideoGame

Answer:
No. Suppose you have an array of type [BoardGame] ≤ [Game]. Then we can assign
a list of type [BoardGame] to a variable of type [Game]. If we then modify the list
with an element of type VideoGame, which is legal since VideoGame ≤ Game, we have
successfully added a VideoGame to an array of dynamic type BoardGame. If we index
into the original variable (of type [BoardGame]) we can access the VideoGame as type
BoardGame, which would lead to an error at runtime.

4. Register Allocation

Consider the following register inference graph:

a b

ced

a) Fill in all 7 statements in the below control-flow graph, so that it results in the register
interference graph. Use only statements of the form x = 1 and x = y + x, where x, y, and
z are variables (i.e., a, b, c, d, e). Assume that no variables are live on entry and that only
e is live on exit.

1. a = 1

2. b = 1
3. c = 1
4. e = a + b

5. d = c + e 6. d = 1

7. d = d + e
{e}

{d,e}

{d,e}{d,e}

{c,e} {e}

{c,e}

{a,b,c}

{a,b}

{a}
{}

b) Using the graph coloring heuristics in lecture 16, give the smallest number of colors k that
enable the heuristic to complete without spilling. If there are multiple nodes that could be
deleted from the graph, break ties by first selecting a node with the fewest neighbors and
second by choosing the node whose label is first in alphabetical order. Using your provided
k, give the state of the stack when all nodes have been deleted from the graph.

Value of k: 3

Top of stack (pushed last)
c

b

a

e

d

Bottom of stack (pushed first)

c) Provide the register allocation by listing the variables assigned to each register (named
r1, r2, r3, r4, r5, r6, and r7). Use the minimal number of registers.

Answer:

r1: c
r2: b, d
r3: a, e

5. Optimization

Consider the following three-address IR code for a function foo. Assume a and b are foo’s
arguments.

1 foo:
2 c = 0
3 d = a / 2
4 L1:
5 if c > d goto L2
6 e = b – 1
7 f = e
8 i = e – 1
9 g = e * 4

10 h = i - c
11 k = f * 4
12 j = i – c
13 c = c + 1
14 goto L1
15 L2:
16 ret k

(a) Divide the function into basic blocks by giving the line numbers of each basic block.
Give the line numbers as inclusive–inclusive ranges and name each block. So, if the
second basic block covered lines 10, 11, 12, then you would write: “BB2: 10–12”.

Answer:

BB1: 1–3
BB2: 4–5
BB3: 6–14
BB4: 15–16

(b) What are the edges between the basic blocks? Give your answers as (source,sink)
pairs. So if there is an edge between BB1 and BB2 from (a), then you would write:
“(BB1,BB2)”.

Answer:

(BB1, BB2)
(BB2, BB3)
(BB2, BB4)
(BB3, BB2)

(c) What variable(s) (if any), violate the static single assignment (SSA) property?

Answer:

The variable c violates the SSA property, as it is written to twice.

(d) Assume common sub-expression elimination and constant folding have been applied
several times (until convergence) to all statements except c = c+1 on line 13. What
variables can be removed by dead code elimination?

Answer:

g, h, i, j

(blank page for extended answers)

