
CS143 Written Assignment 4 Solution

James Dong

Due: June 4th, 2024 EOD

1. (a) Value:

Address Line Number (Method)
0x8020 ⟨line 3⟩ (value)
0x8028 ⟨line 4⟩ (set)

MulOp:

Address Line Number (Method)
0x8030 ⟨line 3⟩ (value)
0x8038 ⟨line 4⟩ (set)
0x8040 ⟨line 8⟩ (operate)

AddOp:

Address Line Number (Method)
0x8048 ⟨line 3⟩ (value)
0x8050 ⟨line 4⟩ (set)
0x8058 ⟨line 11⟩ (operate)

1

(b) Heap layout:

Address Value Meaning
⟨object Main⟩ + 0x0000 5 (class tag)
⟨object Main⟩ + 0x0008 4 (object size)
⟨object Main⟩ + 0x0010 0x8800 (dispatch ptr)
⟨object Main⟩ + 0x0018 ⟨object Stack⟩ (stack)
⟨object Stack⟩ + 0x0000 4 (class tag)
⟨object Stack⟩ + 0x0008 5 (object size)
⟨object Stack⟩ + 0x0010 0x8000 (dispatch ptr)
⟨object Stack⟩ + 0x0018 ⟨object Value⟩ (head)
⟨object Stack⟩ + 0x0020 void (tail)
⟨object Value⟩ + 0x0000 1 (class tag)
⟨object Value⟩ + 0x0008 4 (object size)
⟨object Value⟩ + 0x0010 0x8020 (dispatch ptr)
⟨object Value⟩ + 0x0018 2 (value)

IO may be included as well, without penalty. (Note that we don’t really know the
layout of IO, as it is not specified, so it was not intended to be included.)

2

(c) Stack layout:

Address Value Meaning
0x7777fff8 0x7ffffff8 (saved frame pointer)
0x7777fff0 ⟨object Main⟩ (argument 0 of main)
0x7777ffe8 0x2000 (return address of main)
0x7777ffe0 ⟨object IO⟩ (local variable io)
0x7777ffd8 5 (local variable num)
0x7777ffd0 0x7777ffe8 (saved frame pointer)
0x7777ffc8 ⟨object Main⟩ (argument 0 of reduce)
0x7777ffc0 ⟨line 54⟩ (return address of reduce)
0x7777ffb8 ⟨object AddOp⟩ (local variable x)
0x7777ffb0 ⟨object AddOp⟩ (local variable op)
0x7777ffa8 ⟨object Value⟩ (local variable temp)
0x7777ffa0 10 (local variable lhs)
0x7777ff98 1 (local variable rhs)
0x7777ff90 0x7777ffc0 (saved frame pointer)
0x7777ff88 1 (argument 2 of operate)
0x7777ff80 10 (argument 1 of operate)
0x7777ff78 ⟨object AddOp⟩ (argument 0 of operate)
0x7777ff70 ⟨line 35⟩ (return address of operate)

Full credit should be awarded if the frame pointer addresses are off by 8 (matching
the behavior of PA4’s stack.)

3

2. (a)
so, S1, E ⊢ e1 7→ v1, S2 v1 ̸= ⊥

so, S1, E ⊢ try e1 catch e2 yrt 7→ v1, S2
[Try-OK]

so, S1, E ⊢ e1 7→ ⊥, S2 so, S2, E ⊢ e2 7→ v2, S3

so, S1, E ⊢ try e1 catch e2 yrt 7→ v2, S3
[Try-Catch]

so, S1, E ⊢ throw 7→ ⊥, S1
[Throw]

so, S1, E ⊢ e1 7→ Int(i1), S2 so, S2, E ⊢ e2 7→ Int(i2), S3

so, S1, E ⊢ e1 + e2 7→ Int(i1 + i2), S3
[Plus-OK]

so, S1, E ⊢ e1 7→ ⊥, S2

so, S1, E ⊢ e1 + e2 7→ ⊥, S2
[Plus-Fail1]

so, S1, E ⊢ e1 7→ v1, S2 so, S2, E ⊢ e2 7→ ⊥, S3 v1 ̸= ⊥
so, S1, E ⊢ e1 + e2 7→ ⊥, S3

[Plus-Fail2]

Note: the rules [Plus-Fail1] and [Plus-Fail2] may be have a more general condition
than so, S1, E ⊢ [e1 / e2] 7→ ⊥, S2, such as so, S1, E ⊢ [e1 / e2] 7→ v, S2 and
v ̸= Int(i1). This handles non-integer arguments to + as errors that can be
caught. Both solutions should be accepted for full credit.

4

(b)

⊢ 2 7→ Int(2), S
[Int]

⊢ throw 7→ ⊥, S
[Throw]

⊢ 2 + throw 7→ ⊥, S
[Plus-Fail2]

⊢ 3 7→ Int(3), S
[Int]

⊢ try 2 + throw catch 3 yrt 7→ Int(3), S
[Try-Catch]

5

(c) Simplicio’s scheme can cause stack misalignment when jumping to the catch han-
dler. For example, the following code prints the wrong value:

1 class Main inherits IO {
2 main() : Int {
3 out_int (1 + try 2 + throw catch 3 yrt)
4 };
5 };

This generates the following pseudo-assembly:

1 ; prolog...
2 push 1
3 push 2
4 jmp catch
5 pop r1
6 pop r2
7 add r1, r2
8 push r1
9 jmp tryend

10 catch:
11 push 3
12 tryend:
13 pop r1
14 pop r2
15 add r1, r2
16 push r1
17 pop r1
18 ; call out_int(r1)
19 ; epilog...

The catch handler only expects a stack depth of 1, since we are evaluating 1+ . . . ,
but when evaluating the throw expression, we have pushed another value (2)
onto the stack, since we were evaluating 2 + Then the code following the try
expression will pop the wrong value (2, instead of 1) and will wrongly produce
2 + 3 = 5 instead of the correct result 1 + 3 = 4.

Also, code that does not use a frame pointer can cause more serious issues, as this
causes the entire activation record to be misaligned. For example, in the above
code, there is an extra value (1) on the stack, which displaces the return value and
likely causes the program to crash. This is avoided when there is a frame pointer,
as resetting the stack pointer to the frame pointer resolves this misalignment.
(Solutions that identify this problem without stating the additional assumption
that a frame pointer is not used will receive partial credit.)

Solutions that correctly identify any mutated global state that affects execution
of the program should receive full credit, provided they state the conditions that
would lead to such state being modified and state why this needs to be maintained
by the compiler. Solutions that do not state one or more of these should receive
partial credit.

6

Note that in the absence of any global state, Simplicio’s scheme is actually com-
pletely valid! This is similar to setjmp/longjmp, which is a common error han-
dling scheme in C. It also resembles stack unwinding, but the unwind target can
be determined statically as this is intraprocedural.

7

3. (a) Optimized CFG:

Entry(a, b)

x := a

y := a+ a

z := 0

w := a

v := b
if a > b goto B2
else goto B3

x := x+ 2

h := x
goto B4

h := x
goto B4

u := h+ b

h := x

v := v + 2
if v < 10 goto B4

else goto B5

f := h << 5

g := v − b
return (f, g)

Exit

B1

B2 B3

B4

B5

8

(b) Optimized CFG:

Entry(a, b)

x := a

y := a ∗ 2
z := a− a

w := a+ z

v := b
if a > b goto B2
else goto B3

x := a+ 2

h := x
goto B4

h := a
goto B4

u := x+ b

h := x

v := v + 2
if v < 10 goto B4

else goto B5

f := x ∗ 32
g := v − b

return (f, g)

Exit

B1

B2 B3

B4

B5

9

4. (a) Live variables:

Entry(a, b)

Live: a, b
x := a Live: a, b, x
y := x ∗ 2 Live: a, b, x
z := x− a Live: b, x, z
w := x+ z Live: b, x
v := b Live: b, v, x
if x > v goto B2
else goto B3 Live: b, v, x

Live: b, v, x
x := x+ 2 Live: b, v, x
h := x Live: b, h, v, x
goto B4 Live: b, h, v, x

Live: b, v, x
h := x Live: b, h, v, x
goto B4 Live: b, h, v, x

Live: b, h, v, x
u := h+ b Live: b, v, x
h := x Live: b, h, v, x
v := v + 2 Live: b, h, v, x
if v < 10 goto B4
else goto Live: b, h, v, x

Live: b, h, v
f := h ∗ 32 Live: b, f, v
g := v − b Live: f, g
return (f, g) Live:

Exit

B1

B2

B3

B4

B5

10

(b) Interference graph:

f

h

v

x

z

a
b

g u

y

w

a - b;
a - x;
b - h;
b - v;
b - z;
b - x;
b - f;
f - g;
f - v;
h - v;
h - x;
v - x;
x - z;

extra:
a - y;
b - u;
b - w;
b - y;
u - v;
u - x;
w - x;
x - y;

The dashed edges arise from extending the live range of variables to include the
point immediately after they are written. This is not necessary for full credit. To
see why this is necessary, consider the following code:

11

1 add r1, r2 ; x += y
2 mov r1, something ; z = something
3 add r2, r1 ; y += x

This arises by assigning registers x 7→ r1, y 7→ r2, z 7→ r1. Note that this is not a
valid assignment, as the assignment to r1 overwrites the existing value of x, which
is still live, even though z is not live. Dead code elimination can often eliminate
such variables, but it is not valid to do so when instructions have side effects. For
example, if something is a memory-mapped IO address, such as receiving data
from an external device, then it would not be valid to remove the load.

12

(c) Coloring:

f

h

v

x

z

a
b

g

y

w

u

Any valid coloring is accepted for full credit.

13

