
YOUR NAME – SUNet ID
CS143 Spring 2024 – Written Assignment 3

This assignment covers semantic analysis, including scoping, type systems, and code generation.
You may discuss this assignment with other students and work on the problems together. However,
your write-up should be your own individual work, and you should indicate in your submission who
you worked with, if applicable. Assignments can be submitted electronically through Gradescope
as a pdf by Tuesday, May 21, 2024 at 11:59 pm pdt. Please review the course policies for more in-
formation: https://web.stanford.edu/class/cs143/policies/. A LATEX template for writing
your solutions is available on the course website.

1. The Un-Cool Society tore up a precious scroll containing the first-ever Cool program! Thank-
fully, most of the the code was able to be pieced together:

(a)
1 class A {
2 x: A;
3 one(): A { x ← (∗ ??? BLANK 1 ??? ∗) };
4 two(): A { x };
5 three() : String { (∗ ??? BLANK 2 ??? ∗) };
6 };
7 class B inherits A {
8 three() : String { (∗ ??? BLANK 3 ??? ∗) };
9 };

10 class C inherits A {
11 two(): A { new A };
12 three() : String { (∗ ??? BLANK 4 ??? ∗) };
13 };
14 class Main {
15 main(): Object {
16 let io : IO ← new IO,
17 b : B ← new B,
18 c : C ← new C
19 in {
20 io .out_string(c.two().three()) ;
21 io .out_string(" ");
22 io .out_string(c.one().three()) ;
23 io .out_string(" ");
24 io .out_string(b.one().three()) ;
25 io .out_string(" ");
26 io .out_string(c.one().two().one().three()) ;
27 }
28 };
29 };
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Replace only blanks 1-4 on lines 3, 5, 8, and 12 respectively with a single expression
each (no blocks) so that the code prints out “Cool compilers are Cool”.

Answer:
To print “Cool compilers are Cool”:

• Blank 1 should be new SELF_TYPE
• Blank 2 should be “Cool”
• Blank 3 should be “are”
• Blank 4 should be “compilers”
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(b) To celebrate the recovery of the first-ever Cool program, the Cool development team
plans to throw a celebration featuring their food, bananas. Here is an incomplete pro-
gram written by one of the developers:

1 class Main {
2 main(): Object {
3 let io : IO ← new IO, counter: Int ← 5 in {
4 −− print 5 lines of bananas
5 while 0 < counter loop {
6 io .out_string("ba");
7 let counter: Int ← 2 in {
8 −− print "nana" in a Cool way!
9 while 0 < counter loop {

10 io .out_string("na");
11 counter ← counter − 1;
12 } pool;
13

14 −− only print the "s" if we have more than one banana
15 if (∗ INCOMPLETE ∗) then {
16 io .out_string("s\n"); 1;
17 } else 0;
18 };
19

20 −− decrement the print counter
21 counter ← counter − 1;
22 } pool;
23 };
24 };
25 };

The developer needs your help with filling in the incomplete expression on line 15 so
that the program prints the following output:

5 bananas
4 bananas
3 bananas
2 bananas
1 banana

Replace (∗ INCOMPLETE ∗) with a single expression such that the program prints the
desired output, or explain why it is not possible.

Answer:
This is not possible. We need to be able to check the value of the counter variable
created on line 3 (the “print counter”), but at line 15 the “print counter” variable is
shadowed by the counter variable created on line 7 to print the “na”s. This means that
the value of counter will be 0 each time line 15 is executed, regardless of the value of
the print counter, so the code will print “banana” five times.

3



2. Type derivations are expressed as inductive proofs in the form of trees of logical expressions.
For example, the following is the type derivation for O[Int/y], M, C ` y + y : Int:

O[Int/y](y) = Int
[Var]

O[Int/y], M, C ` y : Int
O[Int/y](y) = Int

[Var]
O[Int/y], M, C ` y : Int

[Arith]
O[Int/y], M, C ` y + y : Int

The [Var] and [Arith] labels refer to the corresponding inference rules in the Cool Reference
Manual, section 12.2.1

Consider the following Cool program fragment:
1 class A {
2 i : Int ;
3 b: Bool;
4 s : String;
5 o: SELF_TYPE;
6 foo() : SELF_TYPE { o };
7 bar(): Int { 2 ∗ i + 1 };
8 };
9

10 class B inherits A {
11 a: A;
12 baz(x: Int , y: Int) : Bool { x = y };
13 test () : Object { (∗ PLACEHOLDER ∗) };
14 };

Note that the environments O and M at the start of the method test() are as follows:

O = ∅[Int/i][Bool/b][String/s][SELF_TYPEB/o][A/a][SELF_TYPEB/self ],

M = ∅[(SELF_TYPE)/(A, foo)][(Int)/(A, bar)]
[(SELF_TYPE)/(B, foo)][(Int)/(B, bar)]
[(Int, Int, Bool)/(B, baz)][(Object)/(B, test)].

For each of the following expressions replacing (∗ PLACEHOLDER ∗), provide the inferred
type of the expression, as well as its derivation as a proof tree.2 For brevity, you may omit
subtyping relations where the same type is on both sides (e.g., Bool ≤ Bool). You also do
not need to label each step with the inference rule name like we did above.

1See https://web.stanford.edu/class/cs143/materials/cool-manual.pdf, pp. 18–22.
2To draw proof trees in LATEX, consider using the ebproof package. You can also use the tree in the template as

an example.
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(a) b ← self .baz(i , 1);
Answer:

O(b) = Bool

O(self) = SELF_TYPEB

O, M, B ` self : SELF_TYPEB

O(i) = Int

O, M, B ` i : Int O, M, B ` 1 : Int M(B, baz) = (Int, Int, Bool)

O, M, B ` self .baz(i, 1) : Bool

O, M, B ` b← self .baz(i, 1) : Bool

(b) let c: A ← self.foo() in c. foo()
Answer:

O(self) = SELF_TYPEB

O, M, B ` self : SELF_TYPEB M(B, foo) = (SELF_TYPE)

O, M, B ` self .foo() : SELF_TYPEB SELF_TYPEB ≤ A

O[A/c](c) = A

O[A/c], M, B ` c : A M(A, foo) = (SELF_TYPE)

O[A/c], M, B ` c.foo() : A

O, M, B ` let c: A← self .foo() in c.foo() : A

(c) if 1 ≤ i then self.foo() else a.foo() fi
Answer:

O, M, B ` 1 : Int

O(i) = Int

O, M, B ` i : Int

O, M, B ` 1 ≤ i : Bool

O(self) = SELF_TYPEB

O, M, B ` self : SELF_TYPEB M(B, foo) = (SELF_TYPE)

O, M, B ` self .foo() : SELF_TYPEB

O(a) = A

O, M, B ` a : A M(A, foo) = (SELF_TYPE)

O, M, B ` a.foo() : A

O, M, B ` if 1 ≤ i then self .foo() else a.foo() fi : A
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3. Consider the following Cool program:
1 class Main {
2 b: B;
3 main(): Object {{
4 b ← new B;
5 b. foo() ;
6 }};
7 };

Now consider the following implementations of the classes A and B. Analyze each version of
the classes to determine:

• if the resulting program will pass type checking
• if it does, whether it will execute without runtime errors

Please include a brief (1–2 sentences) explanation along with your answer. Note it is not
sufficient to simply copy the output of the reference Cool compiler: if it fails type checking,
you must specify which hypotheses cannot be satisfied for which rules.

(a)
1 class A {
2 i : Int ← 1;
3 a: SELF_TYPE ←new A;
4 foo() : Int {i};
5 };
6

7 class B inherits A {
8 j : Int ← 1;
9 baz(): Int {i ← 2 + i};

10 foo() : Int {
11 j ← a.baz() + a.foo()
12 };
13 };

Answer: This program does not pass type check-
ing. The type of attribute a on line 3 is SELF_TYPEA,
and the inferred type of the expression it is being set
to is A. However, A 6≤ SELF_TYPEA, so this breaks
the [Attr-Init] type-checking rule.

(b)

1 class A {
2 i : Int ← 1;
3 a: SELF_TYPE;
4 foo() : Int {i};
5 };
6

7 class B inherits A {
8 j : Int ← 1;
9 baz(): Int {i ← i + j};

10 foo() : Int {{
11 a ← new SELF_TYPE;
12 j ← a.baz() + a@A.foo();
13 }};
14 };

Answer: This program will pass type checking and
execute correctly. Here is the sequence of actions
that will occur:

i. Upon initialization, the variable b initially
contains B(i = 1, a = void, j = 1).

ii. b.foo() initializes a to be another B.
iii. a.baz() sets a to be B(i = 2, a = void, j = 1)

and returns 2.
iv. a@A.foo() calls A.foo(), which returns a.i = 2.
v. b.foo() finally sets b.j to 4 and returns 4.
vi. At the end, the main function returns 4. The

final object b looks like

B(i = 1, a = B(i = 2, a = void, j = 1), j = 4)
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4. Consider the following extensions to Cool:

(a) Maps.

expr ::= . . .

| new 〈 TYPE, TYPE 〉
| expr [ expr ]
| expr [ expr ] <- expr

Note: In the above expression definitions, single brackets correspond to the actual [ and
] characters, and not that the tokens between the brackets are optional like in Figure 1
of the Cool manual.
A map is a key-value store, like std::map or std::unordered_map in C++ or dictio-
naries in Python. A key can be inserted into the map with a single associated value.
A map type is defined as 〈T1, T2〉, where T1 can be an Int or String and T2 can be any
type in Cool (including SELF_TYPE and other map types). T1 is the type of the key,
and T2 is the type of the value. Note that the entire hierarchy of map types still has
Object as its topmost supertype. Additionally, the subtype relation between map types
is defined as follows:

〈T1, T2〉 ≤ 〈T ′1, T ′2〉 if and only if T1 = T ′1 and T2 ≤ T ′2.

A map object can be initialized with an expression similar to

my_map : 〈Int, Object〉 ← new 〈Int, String〉;

Thereafter, a key-value pair 〈k, v〉 can be inserted into the map with the syntax my_map[k]
<- v. The value corresponding to a given key can be accessed with the syntax my_map[k].
Both of these expressions return the value, in this case v.
Provide new typing rules for Cool which handle the typing judgments for the three new
forms of expressions: Map-New, Map-Access, and Map-Insert. As an example, your type
rules should ensure the following given the earlier declaration:

O, M, C ` my_map[0] <- “Hello” : Object O, M, C ` my_map[1] : Object

Hint: See [New] in the Cool manual for an example that deals with SELF_TYPE in a
way similar to how you will have to in the Map-New rule.
Note: You do not need to consider the case when the map is accessed with a key that was
never inserted into the map, as that would be handled at runtime and not by the type
checker.

Answer:
T1 ∈ {Int, String}

T ′2 =
{
SELF_TYPEC if T2 = SELF_TYPE
T2 otherwise

[Map-New]
O, M, C ` new 〈T1, T2〉 : 〈T1, T ′2〉
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O, M, C ` e1 : 〈T1, T2〉
O, M, C ` e2 : S1

S1 = T1 [Map-Access]
O, M, C ` e1[e2] : T2

O, M, C ` e1 : 〈T1, T2〉
O, M, C ` e2 : S1
O, M, C ` e3 : S2

S1 = T1
S2 ≤ T2 [Map-Insert]

O, M, C ` e1[e2] <- e3 : T2
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(b) Multiple inheritance.
Cool’s type system allows single inheritance, where one class inherits from at most
one other class. However, many programming languages3 allow a class to inherit from
multiple superclasses. This is especially useful for “interface”-like classes: a hypothetical
File class can inherit from both Reader and Writer, while standard input only inherits
from Reader:

1 class Reader {
2 read(): String {""}; −− to be overridden by subclass
3 };
4 class Writer {
5 write(s : String) : SELF_TYPE {self}; −− to be overridden by subclass
6 };
7 class File inherits Reader, Writer {
8 read(): String { ... }
9 write(s : String) : SELF_TYPE {{ ...; self; }}

10 };
11 class Stdin inherits Reader {
12 read(): String { ... }
13 };

Now, most Cool code would continue to work if Cool is extended to support multiple
inheritance. However, some Cool expressions would have undefined behavior without
adjustments to its semantics. Identify one form of expression that would be undefined
and explain why it would be undefined.

Answer:
There are three kinds of expressions that would be undefined:
i. case expressions. From section 7.9 of the Cool manual, given an expression with

dynamic type C, a case expression always selects “the branch with the least type
<typek> such that C ≤ <typek>.” In other words, a case expression would try to
find the most specific branch that still matches the input expression. However, if
multiple inheritance is allowed, we could have a situation where two branches have
types that are incomparable, or equally specific.
As a concrete example, consider the following expression:

1 case new File of
2 r : Reader => ...;
3 w : Writer => ...;
4 esac

It is undefined which branch should execute, since File ≤ Reader and File ≤Writer,
yet neither Reader nor Writer is “less than” (or more specific than) the other.

ii. if expressions. Suppose there exists a class File2 that also inherits from Reader and
Writer:

1 class File2 inherits Reader, Writer {
2 read(): String { ... };
3 write(s : String) : SELF_TYPE {{ ...; self; }};
4 };

and additionally there is code like
3Examples include C++, Go, and Python.
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1 if ... then
2 new File
3 else
4 new File2
5 fi

The type of this expression is not well-defined, since both Reader and Writer are
possible least upper bounds of File and File2.

iii. Dispatch expressions. Suppose there are two base classes that both define the same
method in conflicting ways:

1 class IsTrue {
2 test () : Bool { true };
3 };
4 class IsFalse {
5 test () : Bool { false };
6 };
7 class Chimera inherits IsTrue, IsFalse {};

It is unclear which definition would be used for “(new Chimera).test()”.
As an aside, it’s interesting to see how real programming languages solve these problems.
i. For case, Go has a feature analogous to case called the type switch statement.

Python 3.10 introduced the “pattern matching statement” with similar functionality.
And a pattern matching syntax is proposed for C++ as well.
In all three languages, the match statement chooses not the “least” (or “best”)
branch, but instead the first branch that matches. So in our example, all three
languages would choose the Reader branch.
For more details, refer to the specification of each of those languages:
A. Go Programming Language Specification, https://go.dev/ref/spec#Type_

switches;
B. C++ P1371, §7.3 First Match rather than Best Match, https://wg21.link/

p1371r3#page=21; and
C. Python PEP-622, https://peps.python.org/pep-0622/#match-semantics.

ii. For if , Go does not have an equivalent expression type, while Python does not
conduct static typing. C++ requires the two alternatives to be somewhat compatible
in type, so our test case above would result in a type error. See https://godbolt.
org/z/vzqYce51e.

iii. For dispatch, Python uses the order of inheritance to decide which parent class
“wins”. C++ and Go, on the other hand, forbid ambiguous calls to inherited meth-
ods. See the following “playground” links:
A. C++, https://godbolt.org/z/6WffGY864
B. Go, https://go.dev/play/p/IyhGKmTOli0
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5. Consider the following assembly language used to program a stack (r, r1, and r2 denote
arbitrary registers):

• push offset r: copies the value of r and pushes it onto the stack with a provided offset.
An offset of 0 pushes a value to the top of the stack, an offset of 1 pushes a value to the
second-highest position in the stack, etc.

• read offset r: copies the value at the provided offset from the top of the stack into r.
This command does not modify the stack. An offset of 0 reads the value at the top of
the stack, an offset of 1 reads the value at the second-from-top of the stack, etc.

• pop offset: discards the value at the provided offset from the top of the stack. An
offset of 0 pops the value at the top of the stack, an offset of 1 pops the value at the
second-highest position in the stack, etc.

• r1 ∗= r2: multiplies r1 and r2 and saves the result in r1. r1 may be the same as r2.
• r1 /= r2: divides r1 with r2 and saves the result in r1. r1 may be the same as r2.

Remainders are discarded (e.g., 5/2 = 2).
• r1 += r2: adds r1 and r2 and saves the result in r1. r1 may be the same as r2.
• r1 −= r2: subtracts r2 from r1 and saves the result in r1. r1 may be the same as r2.
• jump r: jumps to the line number in r and resumes execution.
• print r: prints the value in r to the console.

The machine has two registers available to the program: reg1, and reg2. The stack is
permitted to grow to a finite, but very large, size. If an invalid line number is invoked, a
number is divided by zero, push, read, or pop is executed with an invalid offset, or the
maximum stack size is exceeded, the machine crashes.

Write code to enumerate and print the factorials (Fn = n × Fn−1 where F1 = 1; e.g.,
1, 2, 6, 24, . . .) starting at F1. Assume that the code will be placed at line 100, and will
be invoked by pushing 1, 1 onto the stack 〈$, . . . , 1, 1〉, storing 100 in reg1, and running
jump reg1.
Your code should use the print opcode to display numbers in the sequence. You may not
hardcode constants nor use any other instructions besides the ones given above. There is no
need to keep the number in memory after it has been printed out. Your code should not
terminate (or crash) after any amount of time. Assume that registers and the stack can hold
arbitrarily large integers so computation will never overflow.
Hint: it may help to comment each line with a symbolic machine state and think about what
the state the code should be in at the end. (You are not required to do this but it will help
us give you partial credit if you do.) E.g.:

// initial : reg1=100 reg2= stack=〈n, Fn−1〉

100 read 0 reg2 // reg1=100 reg2=Fn−1 stack=〈n, Fn−1〉
101 pop 0 // reg1=100 reg2=Fn−1 stack=〈n〉
102 ...

// final : ???
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Answer:

// initial : reg1=100 reg2= stack=〈n, Fn−1〉

100 read 0 reg2 // reg1=100 reg2=Fn−1 stack=〈n, Fn−1〉
101 pop 0 // reg1=100 reg2=Fn−1 stack=〈n〉
102 push 1 reg1 // reg1=100 reg2=Fn−1 stack=〈100, n〉
103 read 0 reg1 // reg1=n reg2=Fn−1 stack=〈100, n〉
104 pop 0 // reg1=n reg2=Fn−1 stack=〈100〉
105 reg2 ∗= reg1 // reg1=n reg2=Fn stack=〈100〉
106 print reg2 // reg1=n reg2=Fn stack=〈100〉
107 push 1 reg2 // reg1=n reg2=Fn stack=〈Fn, 100〉
108 reg2 /= reg2 // reg1=n reg2=1 stack=〈Fn, 100〉
109 reg2 += reg1 // reg1=n reg2=n + 1 stack=〈Fn, 100〉
110 push 2 reg2 // reg1=n reg2=n + 1 stack=〈n + 1, Fn, 100〉
111 read 0 reg1 // reg1=100 reg2=n + 1 stack=〈n + 1, Fn, 100〉
112 pop 0 // reg1=100 reg2=n + 1 stack=〈n + 1, Fn〉
113 jump reg1 // reg1=100 reg2=n + 1 stack=〈n + 1, Fn〉

// final : reg1=100 reg2=n + 1 stack=〈n + 1, Fn〉
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