CS143 Spring 2024 — Written Assignment 1
Due Thursday, April 18, 2024 11:59 PM PDT

This assignment covers regular languages, finite automata, and lexical analysis. You may discuss
this assignment with other students and work on the problems together. However, your write-
up should be your own individual work, and you should indicate in your submission who you
worked with, if applicable. Assignments can be submitted electronically through Gradescope as
a PDF by 11:59 PM PDT on the due date. Please review the course policies for more information:
http://web.stanford.edu/class/cs143/policies/index.html. A KTEX template for writing
your solutions is available on the course website. To create finite automata diagrams, you can
either use the TikZ package directly by following the examples in the template, or a tool like
https://madebyevan.com/fsm/.

1. Write regular expressions for the following languages over the alphabet > = {0, 1}.

(a) The set of strings beginning with 0 and having an odd numbered length.
Solution:

O((0[1)(0[1))*
(b) The set of all strings that contain less than three 1’s.

Solution:

0*170* 170"

(c) The set of strings where 0’s and 1’s appear in alternating groups of odd numbered length.
Examples of strings in the language: ¢, 0, 0111, 0001000, and 101000. Examples of
strings not in the language: 11000, 111011, and 00).

Solution:

(0(00)%)7 (1(11)"0(00)")* (1(11)")?


http://web.stanford.edu/class/cs143/policies/index.html
https://madebyevan.com/fsm/

2. Draw DFAs for each of the languages from question 1. Note that a DFA must have a tran-
sition defined for every state and symbol pair. You must take this fact into account for
your transformations. Your DFAs should not have more than 10 states. Submissions with
unnecessarily complex DFAs may not receive full credit.

Notice that a short regular expression does not automatically imply a DFA with few states,
nor vice versa.

(a) The set of strings beginning with 0 and having an odd numbered length.

Solution:
0,1
- (O—()
start —
0,1
1
O

(b) The set of all strings that contain less than three 1’s.

Solution:
0 0 0

(c) The set of strings where 0’s and 1’s appear in alternating groups of odd numbered length.

Solution:
0
start HC<O 1 Q:) 0,1
1 1 0

1

0,1




3. Using the techniques covered in class, transform the following NFAs over the alphabet {a, b, c}
into DFAs. Your DFAs should not have more than 10 states. Note that a DFA must have a
transition defined for every state and symbol pair, whereas a NFA need not. You must take
this fact into account for your transformations. Hint: Is there a subset of states the NFA
transitions to when fed a symbol for which the set of current states has no explicit transition?

Also include a mapping from each state of your DFA to the corresponding states of the original
NFA. Specifically, a state ¢ of your DFA maps to the set of states @) of the NFA such that an
input string stops at ¢ in the DFA if and only if it stops at one of the states in ) in the NFA.

Tip: for readability, states in the DFA may be labeled according to the set of states they
represent in the NFA. For example, state ggi2 in the DFA would correspond to the set of
states {qo, q1, g2} in the NFA,| whereas state ¢13 would correspond to set of states {q1,¢3} in
the NFA.

(a) ¢

start H

Solution:

Corresponding states (DFA to NFA):

« 0 {qo0}
o q1:{qi}
e qo1:{q,q1}

e qp:1{}



Solution:

Corresponding states (DFA to NFA):

« q: {0}

e qo1:{q0, a1}

e qo2: {90, 2}

* qo12 : {q0,q1, g2}

e qp:1{}



Solution:

Corresponding states (DFA to NFA):

« q0:{q}

e qo123 : {q0, 91,92, G3}

e G023 : {90, 92,43}

* o3 : {9043}

* Q01234 : {40, 71,42, 43, G4}
e qo234 : {q0, 92,3, G4}

* G034 {90,q3,q4}



4. Let L be a language over ¥ = {a, b, c}, such that string w is in L if and only if w # ¢ and the
last character in w appears an even number of times in w

Examples of strings in L: aa, abacaba, bab.
Examples of strings not in L: ¢, a, abcabca, bbb.

Draw an NFA for L. Your solution should have no more than 15 states.

Solution:
b,c b, c
-O~O
a
€
a,c a,c
start — £ b b @
b
€ a,b




5. Consider the following tokens and their associated regular expressions, given as a flex scanner
specification:

hh

(01110) printf ("apple");
(10) 7?07 printf ("banana") ;
(0110+]11001%1) printf ("coconut") ;

Give an input to this scanner such that the output string is ((apple)?(banana)?*)?((apple)3coconut)?,
where A’ denotes A repeated ¢ times. (And, of course, the parentheses are not part of the
output.) You may use similar shorthand notation in your answer.

Solution:
((01)3(0)H)% (01)? 0110 (10)®1001



6. Recall from the lecture that, when using regular expressions to scan an input, we resolve
conflicts by taking the largest possible match at any point. That is, if we have the following
flex scanner specification:

ot
do { return T_Do; }
[A-Za-z_]1[A-Za-20-9_]* { return T_Identifier; }

and we see the input string “dot”, we will match the second rule and emit T Identifier for
the whole string, not T Do.

However, it is possible to have a set of regular expressions for which we can tokenize a
particular string, but for which taking the largest possible match will fail to break the input
into tokens. Give an example of no more than two regular expressions and an input string
such that: a) the string can be broken into substrings, where each substring matches one
of the regular expressions, b) our usual lexer algorithm, taking the largest match at every
step, will fail to break the string in a way in which each piece matches one of the regular
expressions. Explain how the string can be tokenized and why taking the largest match won’t
work in this case.

As a challenge (not necessary for credit), try to find a solution that only uses one regular
expression.

Solution: Consider the following scanner for a JavaScript-like language that has both ==
and === operators:

hh

== { return T_Equal; }

=== { return T_StrictEqual; }
and the string “====". This can be broken into ‘==", followed by ‘==". However, the largest
possible match strategy will first consume the begining of the string as ‘===", then stop when
it finds that the remainder of the input is just ‘=", which can’t be matched to any token.



