
CS 143 Final
Spring 2023

• Please read all instructions (including these) carefully.

• There are 5 questions on the exam, some with multiple parts. You have 180 minutes
to work on the exam.

• The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason other than to
access the class webpage.

• Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

• Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. You may get as few as 0 points for a question if
your solution is far more complicated than necessary. Partial solutions will be graded
for partial credit.

SUNET ID:

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points
1 20
2 20
3 15
4 15
5 10
6 20

TOTAL 100



1. Dataflow Analysis

In this problem, you will develop a dataflow analysis that computes whether a variable is
always defined at a particular point in a program. More precisely, we are interested in
knowing whenever a variable x is used in a program statement s, whether x is defined on all
program paths that lead to s. As an example, consider the following control-flow graph:

B1:
x = 5 + y
z = x + x

Entry:

B2:
w = z + x

B3:
w = 4

B4:
y = w * 2

In this graph,

• The use of x in B1 and B2 are always defined.

• The use of w in B4 is always defined.

• The use of y in B1 is not always defined.

The analysis computes for each program point p and variable x whether x is always defined
at p. The function A refers to the results of the “always-defined” analysis. Specifically,
A(s, x, out) refers to its result for variable x at the program point just after statement s, and
A(s, x, in) refers to its result for x at the program point just before s.

(a) How many values can A take at a given program point? Give names to those values.

Answer:



(b) What value should all program points be initialized to?

Answer:

(c) What is the value of A(x := e, x, out) for any expression e?

Answer:

(d) How do you compute the value of A(x := e, x, in) for any expression e?

Answer:



2. Code Generation

In this question, we introduce a short-circuiting and operator to the Cool programming
language. We first augment the Cool expression grammar as follows:

expr ::= . . .

| expr and expr

We define that the expression e1 and e2 should have the same meaning as the Cool expression:
if e1 then

if e2 then true else false fi
else

false
fi

Notice that under this definition, the and operator short-circuits: if e1 turns out to be false,
then e2 should not be evaluated at all. As a more concrete example, if crash() is a function
that always crashes, then “false and crash()” should evaluate to false and not crash.

(a) Give the formal operational semantic rule(s) to describe the runtime behavior of the
new and operator, in the style of Cool manual §13.4. Use no more than two rules.
Your answer must be independent of the if -expression, meaning that you cannot merely
rewrite the and-expression into an equivalent if -expression.

Answer:



(b) Using the format of lecture 12, write down the MIPS code generation function cgen
for the and-expression.
In addition to the short-circuit behavior, the convention for Boolean-valued expressions
is: if e is an expression that evaluates to a Boolean value, then after cgen(e), the register
$a0 contains 0 if e evaluates to false or 1 if e evaluates to true.
Your cgen function should contain no more than 6 lines. Once again, your answer
must be independent of the if -expression, meaning that you cannot merely rewrite the
and-expression into an equivalent if -expression.

Answer:

cgen(e1 and e2) =



3. Register Allocation

(a) You are given the following control flow graph that uses variables a to f. The program
statements have been replaced by empty boxes. Above/below every such box we give
the set of variables that are live right before/after the corresponding statement.
Fill in program statements in the boxes, so that the given live sets are consistent with
the code. Program statements can take the form x = 1, x = y, or x = y + z, where
x, y, and z can be any of the variables used by the control flow graph.
If more than one statement would work in some position, pick the simplest one (prefer
x = 1 over x = y over x = y + z).

{ d, e }
{ e, a }

{ d, e }
{ d }

{ e }
{ e, f }
{ d, e }

{ c, a }
{ a, b }
{ a }

{ c, d, a }

{ }

{ e, a, d}



(b) Fill in the following register interference graph by drawing edges between nodes where
applicable. Assume only e is live on exit of the component of the program correspond-
ing to the above control-flow graph.

a

b

c

d

e

f

(c) Using the graph coloring heuristics in lecture 16, give the smallest number of colors k
that enable the heuristic to complete without spilling. If there are multiple nodes that
could be deleted from the graph, break ties by first selecting a node with the fewest
neighbors and second by choosing the node whose label is first in alphabetical order.
Using your provided k, give the state of the stack when all nodes have been deleted
from the graph.

Value of k:

Top of stack (pushed last)

Bottom of stack (pushed first)



4. Garbage Collection

In this question, we will compare the three garbage collection techniques we discussed in
class: mark-and-sweep, stop-and-copy, and reference counting. When we refer to garbage
collection, we include both the garbage collection phases of mark-and-sweep/stop-and-copy
and the memory freeing when the reference count of a reference counted object drops to zero.

Assume we have allocated objects A to F in lexicographical order and that they were placed
at the beginning of the heap in order with no gaps. The objects A to F were allocated before
any garbage collection, but other objects may have been allocated later. Garbage collection
has run one or more times and garbage has just been collected. Only one register (root)
points to the heap and no stack values point to the heap.

(a) Given the above assumptions, what garbage collection algorithm(s) may result in the
following heap? Please explain why in one sentence.

A B D Croot

Answer:



(b) Given the above assumptions, what garbage collection algorithm(s) may result in the
following heap? Please explain why in one sentence.

A B C D E F …root

Answer:

(c) Ignore the cost of allocation and marking. Calculate how much faster or slower mark-
and-sweep is over stop-and-copy if 8% of objects survive garbage collection and it
is 20 times more expensive for stop-and-copy to copy/scan an object than it is for
mark-and-sweep to sweep it.

Answer:



5. Language Design

In this question we are going to explore an alternative for loop to the one we saw in WA4.
The [For-Str] loop iterates through a string one character at a time. Like COOL while loops,
the for loop evaluates to void.

expr ::= . . .

| for ID in expr loop expr pool

The [For-Str] loop iterates through each character in the string provided by the first expres-
sion. Thus, in each iteration, ID is a String containing a single character. We assume that
ID has been defined before its use in the for loop.

(a) Give type checking rule for the [For-Str] loop construct.

Answer:



(b) Let us extend Cool so that we can inherit from base classes. Thus, the following code
would be permitted:
class A inherits String {

wordCount():Int { ... };
firstWord() :String { ... };

};

Would the typing rule for [For-Str] change if inheritance from basic classes in Cool was
permitted? Either explain why the rules would stay the same or give the new type
rules for [For-Str].

Answer:



6. Runtime Organization

Consider the following COOL class and method definitions
1 class Main {
2 main() : Object {
3 let a: Int ← 4, b: Int ← 5 in bar(a,b)
4 };
5

6 foo(z: Int) : Int {
7 let c: Int ← 7 in {
8 8 + baz(z,c,false) ;
9 }

10 };
11

12 bar(x: Int , y: Int) : Object {
13 if x+3 = foo(y+1) then
14 baz(x,y,true)
15 fi
16 };
17

18 baz(d: Int , e: Int , f : Bool) : Int {
19 if f then
20 if d − e = 0 then
21 1
22 else
23 d + e
24 fi
25 else {
26 d ← d + 1;
27 e + f;
28 }
29 };
30 };

A compiler with an unknown runtime management strategy is used to compile the following
Cool code. In particular, the strategy may not be exactly one that you have seen before. A
partial listing of the stack at a certain program point in the execution is given below. There
are three kinds of entries on the stack: a return address, a stack address, and a reference to
an object on the heap (e.g., Int(4) or Bool(false)).



(a) Fill in the missing entries in the table.

Address Contents

100 OS frame pointer

104 OS return address

108 Int(4)

112

116 100

120

124 Int(5)

128 return address of bar(a,b)

132

136

140 Int(6)

144

148

152 Int(8)

156

160 Int(7)

164

168

172 return address of baz(z,c,false)



(b) What is the first program point in the execution of the program that could have this
stack content? Give the program point by listing the line number of the last statement
that executed.



(blank page for extended answers)


