
CS143 Final
Spring 2022

• Please read all instructions (including these) carefully.

• There are 5 questions on the exam, some with multiple parts. You have 180 minutes
to work on the exam.

• The exam is open note. You may use laptops, phones and e-readers to read electronic
notes, but not for computation or access to the internet for any reason other than to
access the class webpage.

• Please write your answers in the space provided on the exam, and clearly mark your
solutions. Do not write on the back of exam pages or other pages.

• Solutions will be graded on correctness and clarity. Each problem has a relatively
simple and straightforward solution. You may get as few as 0 points for a question if
your solution is far more complicated than necessary. Partial solutions will be graded
for partial credit.

SUNET ID:

NAME:

In accordance with both the letter and spirit of the Honor Code, I have neither given nor
received assistance on this examination.

SIGNATURE:

Problem Max points Points

1 20
2 20
3 20
4 20
5 20

TOTAL 100

1. Local Optimization

Consider programs that consist solely of two types of instructions:

• Load: x = y for variable x and variable or constant y.

• Add: x = y + z for variable x and variables or constants y and z.

Assume that for each program, the only live variable on exit is the variable on the left-hand-
side of the last instruction.

For each problem, give the program with fewest instructions that satisfies the stated condi-
tions. You should apply the requested optimizations in the given order. For each optimiza-
tion, you must continue to apply it until no further application is possible. We write CSE
for common subexpression elimination, CP for copy propagation, and DCE for dead code
elimination.

(a) Give a program with 5 or fewer instructions, where applying optimizations (i) results
in a final program with more instructions than applying optimizations (ii). Write the
two final programs obtained by applying (i) and (ii), respectively.

(i) CP → DCE.

(ii) CSE → CP → DCE.

Answer:

(b) Give a program with 6 or fewer instructions, where applying optimizations (ii) results
in a final program with more instructions than applying optimizations (iii). Write the
two final programs obtained by applying (ii) and (iii), respectively.

(iii) CP → CSE → CP → DCE.

Answer:

2. Generational Garbage Collection

In this problem, we will design parts of a generational garbage collector. The garbage collector
of Cool uses this technique, as does most modern garbage-collected languages.

The generational hypothesis states that most allocated objects become dead quickly, while
a few live for a long time. We can exploit this by dividing memory into two separate
garbage-collected regions, called the young generation and the old generation. The high
level algorithm is as follows:

1. Allocate new objects in young .

2. Whenever young is exhausted, garbage collect and move live objects into old .

3. When (and only when) old is exhausted, garbage collect old .

This algorithm can achieve better performance because most garbage collection happens on
young , and when collecting young the algorithm does not traverse through old . Less often,
a full collection on old occurs. In the following questions, you will flesh out the details.

Each of your answers must be justified. A couple of sentences will do. There is no
need to write pseudocode or detailed proofs in any of your answers unless you find it helpful.

(a) For best performance, which garbage collection strategy (mark and sweep, stop-and-
copy, or reference counting) should be used when collecting young?

Answer:

(b) When collecting young objects, we first consider traversing the object graph starting
with the objects reachable from registers and the stack. Describe why this strategy is
incorrect and may collect objects that are still alive.

Answer:

(c) In order to address the issue you found in the previous sub-question, the runtime must
maintain an additional set of root pointers during program execution. Explain why it
is necessary and sufficient to notify the GC every time an assignment to an attribute
is made (as you did in PA4 using _GenGC_Assign), and explain what _GenGC_Assign
must check regarding the current memory locations of the source and destination ob-
jects.

Answer:

(d) We notice that a sizable fraction of objects that die quickly are nevertheless moved
into old because they happen to be alive during their first garbage collection. How can
we modify the young space and its collection procedure to reduce this problem?

Answer:

3. Language Design

To enhance user privacy, a company that uses Cool decides to let programmers clear sensitive
data when it is no longer needed. Their idea is to introduce a new expression:

expr ::= . . .

| clear expr

The clear expression works as follows. Given an expression clear e, the system first evaluates
e. If e evaluates to void, then it does nothing; otherwise, it sets all attributes in the object
to the default value for the type (e.g., void for objects, 0 for Int, etc.), thus destroying the
sensitive data. The return value of clear e should be the value of e after the clearance is
performed, and the static type of clear e is the same as that of e.

(a) Write down the type rule for the clear expression.

Answer:

(b) Write one or more formal operational rules for clear that match the above description
of what the expression should do, in a style similar to the Cool Reference Manual. You
may use without definition any shorthand defined in the Cool manual. In particular,
the default value of type T is denoted DT . Also, as an additional shorthand, you can
access information about types and locations of attributes using the syntax:

v = X(a1:T1 = l1, . . . , an:Tn = ln).

Answer:

(c) Suppose Cool is implemented using a stop-and-copy garbage collector. How effective
is the clear operator in destroying sensitive data?

Answer:

4. Dataflow Analysis and Register Allocation

(a) You spilled coffee on your control-flow graph annotated with live variable sets and on
your register inference graph. Please reconstruct the missing values by filling in the
missing six statements, four live variable sets, and two register inference graph nodes.
The missing statements are of the form x = c, x = y, or x = y + z, where x, y, and
z are one of the variables a–f and c is a constant,

a = 4
d = a

b = 5
a = 5

{ a }
{ d }
{ b, d, e }

{ b, d, e }
{ }
{ c, d }

{ }
{ b, d, e }
{ d, e }

{ }
{ d, e }
{ a, e }
{ e }
{ }

{ a }

fa b

d

{ }

(b) What is the minimum number of register needed to avoid any register spills?

Answer:

(c) Provide a register allocation by listing, for each register, the variables that share it.

Answer:

5. Code Generation and Runtime Organization

Write a Cool program that at some point in its execution results in the following data on the
stack, heap, static data, and code segments. Note that <result> denotes space set aside for
the result of a method and that &main + ∆ denotes some address inside the main function.

1

A 14

B 5

<result>

Stack
⠇

1

<fp>
&main + Δ
<result>

0

<fp>
&f + Δ1
<result>

<fp>
&f + Δ2

Heap

2

Static Code

h()

Answer:

Answer (cont.):

