EXTENSIONS OF LIPSCHITZ MAPPINGS INTO A HILBERT SPACE

William B. Johnson\(^1\) and Joram Lindenstrauss\(^2\)

INTRODUCTION

In this note we consider the following extension problem for Lipschitz functions: Given a metric space \(X\) and \(n = 2, 3, 4, \ldots\), estimate the smallest constant \(L = L(X, n)\) so that every mapping \(f\) from every \(n\)-element subset of \(X\) into \(\ell_2\) extends to a mapping \(\tilde{f}\) from \(X\) into \(\ell_2\) with

\[
\|\tilde{f}\|_{\ell_2} \leq L \|f\|_{\ell_2p}.
\]

(Here \(\|g\|_{\ell_2p}\) is the Lipschitz constant of the function \(g\).) A classical result of Kirszbraun's [14, p. 48] states that \(L(\ell_2, n) = 1\) for all \(n\), but it is easy to see that \(L(X, n) \to \infty\) as \(n \to \infty\) for many metric spaces \(X\).

Marcus and Pisier [10] initiated the study of \(L(X, n)\) for \(X = L_p\). (For brevity, we will use hereafter the notation \(L(p, n)\) for \(L(L_p(0,1), n)\).) They prove that for each \(1 < p < 2\) there is a constant \(C(p)\) so that for \(n = 2, 3, 4, \ldots\),

\[
L(p, n) \leq C(p) (\log n)^{1/p - 1/2}.
\]

The main result of this note is a verification of their conjecture that for some constant \(C\) and all \(n = 2, 3, 4, \ldots\),

\[
L(X, n) \leq C(\log n)^{1/2}
\]

for all metric spaces \(X\). While our proof is completely different from that of Marcus and Pisier, there is a common theme: Probabilistic techniques developed for linear theory are combined with Kirszbraun's theorem to yield extension theorems.

The main tool for proving Theorem 1 is a simply stated elementary geometric lemma, which we now describe: Given \(n\) points in Euclidean space, what

\(^1\)Supported in part by NSF MCS-7903042.

\(^2\)Supported in part by NSF MCS-8102714.
is the smallest \(k = k(n) \) so that these points can be moved into \(k \)-dimensional Euclidean space via a transformation which expands or contracts all pairwise distances by a factor of at most \(1 + \varepsilon \)? The answer, that \(k \leq C(\varepsilon) \log n \), is a simple consequence of the isoperimetric inequality for the \(n \)-sphere in the form studied in [2].

It seems likely that the Marcus-Pisier result and Theorem 1 give the right order of growth for \(L(p, n) \). While we cannot verify this, in Theorem 3 we get the estimate

\[
L(p, n) \geq \delta \left(\frac{\log n}{\log \log n} \right)^{1/p - 1/2} (1 \leq p < 2)
\]

for some absolute constant \(\delta > 0 \). (Throughout this paper we use the convention that \(\log x \) denotes the maximum of \(1 \) and the natural logarithm of \(x \).) This of course gives a lower estimate of

\[
\delta \left(\frac{\log n}{\log \log n} \right)^{1/2}
\]

for \(L(\infty, n) \). That our approach cannot give a lower bound of \(\delta (\log n)^{1/p - 1/2} \) for \(L(p, n) \) is shown by Theorem 2, which is an extension theorem for mappings into \(\ell_2 \) whose domains are \(\varepsilon \)-separated.

The minimal notation we use is introduced as needed. Here we note only that \(B_Y(y, \varepsilon) \) (respectively, \(b_Y(y, \varepsilon) \)) is the closed (respectively, open) ball in \(Y \) about \(y \) of radius \(\varepsilon \). If \(y = 0 \), we use \(B_Y(\varepsilon) \) and \(b_Y(\varepsilon) \), and we drop the subscript \(Y \) when there is no ambiguity. \(S(Y) \) is the unit sphere of the normed space \(Y \). For isomorphic normed spaces \(X \) and \(Y \), we let

\[
d(X,Y) = \inf \|T\| \|T^{-1}\|,
\]

where the inf is over all invertible linear operators from \(X \) onto \(Y \). Given a bounded Banach space valued function \(f \) on a set \(K \), we set

\[
\|f\|_\infty = \sup_{x \in K} \|f(x)\|.
\]

1. THE EXTENSION THEOREMS

We begin with the geometrical lemma mentioned in the introduction.

Lemma 1. For each \(1 > \tau > 0 \) there is a constant \(K = K(\tau) > 0 \) so that if \(A \subseteq \ell_2^n \), \(A = n \) for some \(n = 2, 3, \ldots \), then there is a mapping \(f \) from \(A \) onto a subset of \(\ell_2^k \) \((k \leq [K \log n])\) which satisfies
PROOF. The proof will show that if one chooses at random a rank \(k \) orthogonal projection on \(\ell^n_2 \), then, with positive probability (which can be made arbitrarily close to one by adjusting \(k \)), the projection restricted to \(A \) will satisfy the condition on \(\tilde{f} \). To make this precise, we let \(Q \) be the projection onto the first \(k \) coordinates of \(\ell^n_2 \) and let \(\sigma \) be normalized Haar measure on \(O(n) \), the orthogonal group on \(\ell^n_2 \). Then the random variable

\[
\tilde{f} : (O(n), \sigma) \to L(\ell^n_2)
\]

defined by

\[
f(u) = U^* QU
\]

determines the notion of "random rank \(k \) projection." The applications of Levy's inequality in the first few self-contained pages of [2] make it easy to check that \(f(u) \) has the desired property. For the convenience of the reader, we follow the notation of [2].

Let \(\|\cdot\| \) denote the usual Euclidean norm on \(\mathbb{R}^n \) and for \(1 \leq k \leq n \) and \(x \in \mathbb{R}^n \) set

\[
r(x) = r_k(x) = \sqrt{n} \left(\sum_{i=1}^{k} x(i)^2 \right)^{1/2},
\]

which is equal to

\[
\sqrt{n} \|Qx\|
\]

for our eventual choice of \(k = \lfloor K \log n \rfloor \). Thus \(r(\cdot) \) is a semi-norm on \(\ell^n_2 \) which satisfies

\[
r(x) \leq \sqrt{n} \|x\| \quad (x \in \ell^n_2).
\]

(In [2], \(r(\cdot) \) is assumed to be a norm, but inasmuch as the left estimate \(a \|x\| \leq r(x) \) in formula (2.5) of [2] is not needed in the present situation, it is okay that \(r(\cdot) \) is only a semi-norm.)

Setting

\[
B = \left\{ \frac{x - y}{\|x - y\|} : x, y \in A; x \neq y \right\} \subset S^{n-1},
\]

we want to select \(U \in O(n) \) so that for some constant \(M \),
Let M_r be the median of $r(\cdot)$ on S^{n-1}, so that
\[\mu_{n-1} [x \in S^{n-1} : r(x) \geq M_r] \geq 1/2 \]
and
\[\mu_{n-1} [x \in S^{n-1} : r(x) \leq M_r] \leq 1/2 \]
where μ_{n-1} is normalized rotationally invariant measure on S^{n-1}.

We have from page 58 of [2] that for each $y \in S^{n-1}$ and $\varepsilon > 0$,
\[\sigma[U \in O(n) : M_r - \sqrt{n} \varepsilon \leq r(Uy) \leq M_r + \sqrt{n} \varepsilon] \geq 1 - 4 \exp \left(\frac{-n \varepsilon^2}{2} \right). \]
Hence
\[\sigma[U \in O(n) : M_r - \sqrt{n} \varepsilon \leq r(Uy) \leq M_r + \sqrt{n} \varepsilon \text{ for all } y \in B] \geq 1 - 2n(n+1) \exp \left(\frac{-n \varepsilon^2}{2} \right). \]

By Lemma 1.7 of [2], there is a constant
\[C \leq 4 \sum_{m=1}^{\infty} (m+1) e^{-m/2} \]
so that
\[\left| \int_{S^{n-1}} r(x) \, d\mu_{n-1}(x) - M_r \right| < C. \]

We now repeat a known argument for estimating $\int_{S^{n-1}} r(x) \, d\mu_{n-1}(x)$ which uses only Khintchine's inequality.

For $1 \leq k \leq n$ we have:
\[\frac{1}{k} \sum_{i=1}^{k} x(i) \left| \int_{S^{n-1}} \delta_1 \, d\mu_{n-1}(x) \right| = \]
\[= \sqrt{k} \int_{S^{n-1}} \left| < x, \sum_{i=1}^{k} \delta_1 > \right| \, d\mu_{n-1}(x) \]
\[\leq \sqrt{n} \int_{S^{n-1}} \left| < x, \delta_1 > \right| \, d\mu_{n-1}(x) \]
[by the rotational invariance of μ_{n-1}].

Setting
\[a_n = \int_{S^{n-1}} \left| < x, \delta_1 > \right| \, d\mu_{n-1}(x), \]
we have from Khintchine's inequality that for each $1 \leq k \leq n$,
\[
\sqrt{n_k} a_k \leq \int_{S^{n-1}} r_k(x) \, d\mu_{n-1}(x) \leq \sqrt{2n_k} a_k.
\]
(We plugged in the exact constant of $\sqrt{2}$ in Khintchine's inequality calculated in [5] and [13], but of course any constant would serve as well.)

Since obviously $r_n(x) = \sqrt{n}$, we conclude that for $1 \leq k \leq n$
\[
(1.3) \quad \sqrt{k/3} \leq \int_{S^{n-1}} r_k(x) \, d\mu_{n-1}(x) \leq \sqrt{k}.
\]

Specializing now to the case $k = \lfloor K \log n \rfloor$, we have from (1.2) and (1.3) that
\[
\sqrt{k/3} \leq M_r
\]
at least for $K \log n$ sufficiently large. Thus if we define
\[
\varepsilon = \tau \sqrt{k/3n}
\]
we get from (1.1) that
\[
\sigma \left[U \in O(n) : (1 - \tau)M_r \leq \tau(Uy) \leq (1 + \tau)M_r \quad \text{for all } y \in B \right] \\
\geq 1 - 2n(n + 1) \exp \left(-\frac{\tau^2 k}{18} \right) \\
\geq 1 - 2n(n + 1) \exp \left(-\frac{\tau^2 K \log n}{18} \right)
\]
which is positive if, say,
\[
K \geq \left(\frac{10}{\tau} \right)^2.
\]

It is easily seen that the estimate $K \log n$ in Lemma 1 cannot be improved. Indeed, in a ball of radius 2 in ℓ^k_2 there are at most 4^k vectors $\{x_i\}$ so that $\|x_i - x_j\| \geq 1$ for every $i \neq j$ (see the proof of Lemma 3 below). Hence for τ sufficiently small there is no map F which maps an orthonormal set with more than 4^k vectors into a k-dimensional subspace of ℓ^2_2 with
\[
\|F\|_{\ell^p} \|F^{-1}\|_{\ell^p} \leq \frac{1 + \tau}{1 - \tau}.
\]

We can now verify the conjecture of Marcus and Pisier [10].
THEOREM 1. \[\sup_{n=2, 3, \ldots} (\log n)^{-1/2} \text{L}(\infty, n) < \infty.\] In other words: there is a constant \(K\) so that for all metric spaces \(X\) and all finite subsets \(M\) of \(X\) (\(\text{card}\ M = n\), say) every function \(f\) from \(M\) into \(\ell_2\) has a Lipschitz extension \(\tilde{f}: X \rightarrow \ell_2\) which satisfies
\[\|\tilde{f}\|_{\ell_1p} \leq K \sqrt{\log n} \|f\|_{\ell_1p}.\]

PROOF. Given \(X, M \subset X\) with \(\text{card}\ M = n\), and \(f: M \rightarrow \ell_2\), set \(A = f[M]\).
We apply Lemma 1 with \(\tau = 1/2\) to get a one-to-one function \(g^{-1}\) from \(A\) onto a subset \(g^{-1}[A]\) of \(\ell_2^k\) (where \(k \leq K \log n\)) which satisfies
\[\|g^{-1}\|_{\ell_1p} \leq 1; \quad \|g\|_{\ell_1p} \leq 3.\]

By Kirszbraun's theorem, we can extend \(g\) to a function \(\tilde{g}: \ell_2^k \rightarrow \ell_2\) in such a way that
\[\|\tilde{g}\|_{\ell_1p} \leq 3.\]

Let \(I: \ell_2^k \rightarrow \ell_\infty^k\) denote the formal identity map, so that
\[\|I\| = 1, \quad \|I^{-1}\| = \sqrt{k}.\]

Then
\[h = Ig^{-1}f, \quad h: M \rightarrow \ell_\infty^k\]
has Lipschitz norm at most \(\|f\|_{\ell_1p}\), so by the non-linear Hahn-Banach theorem (see, e.g., p. 48 of [14]), \(h\) can be extended to a mapping
\[\tilde{h}: X \rightarrow \ell_\infty^k\]
which satisfies
\[\|\tilde{h}\|_{\ell_1p} \leq \|f\|_{\ell_1p}.\]

Then
\[\tilde{f} = \tilde{g} I^{-1} \tilde{h}; \quad \tilde{f}: X \rightarrow \ell_2\]
is an extension of \(f\) and satisfies
\[\|\tilde{f}\|_{\ell_1p} \leq 3 \sqrt{k} \|f\|_{\ell_1p} \leq 3K \sqrt{\log n} \|f\|_{\ell_1p}.\]
Next we outline our approach to the problem of obtaining a lower bound for $L(\infty,n)$. Take for f the inclusion mapping from an ϵ-net for S^{N-1} into ℓ^N_2, and consider ℓ^N_2 isometrically embedded into L_∞. A Lipschitz extension of f to a mapping $\tilde{f}: L_\infty \rightarrow \ell^N_2$ should act like the identity ℓ^N_2, so the techniques of [8] should yield a linear projection from L_∞ onto ℓ^N_2 whose norm is of order $\|f\|_{lip}$. Since ℓ^N_2 is complemented in L_∞ only of order \sqrt{N} and there are ϵ-nets for S^{N-1} of cardinality $n = \lfloor 4/\epsilon \rfloor^N$, we should get that

$$L(\infty,n) \geq \sqrt{N} \geq \delta \left(\frac{\log n}{\log \epsilon} \right)^{1/2}.$$

In Theorem 2 we make this approach work when ϵ is of order N^{-2}, so we get

$$L(\infty,n) \geq \delta^t \left(\frac{\log n}{\log \log n} \right)^{1/2}.$$

That the difficulties we incur with the outlined approach for larger values of ϵ are not purely technical is the gist of the following extension result.

(*)THEOREM 2. Suppose that X is a metric space, $A \subset X$, $f:A \rightarrow \ell_2$ is Lipschitz and $d(x,y) \geq \epsilon > 0$ for all $x \neq y \in A$. Then there is an extension $\tilde{f}: X \rightarrow \ell_2$ of f so that

$$\|\tilde{f}\|_{lip} \leq \frac{6D}{\epsilon} \|f\|_{lip},$$

where D is the diameter of A.

PROOF. We can assume by translating f that there is a point $0 \in A$ so that $f(0) = 0$. Set $B = A - \{0\}$ and define

$$F : A \rightarrow \ell^1_B$$

by

$$F(b) = \begin{cases} \delta_{\epsilon, b}, & b \neq 0 \\ 0, & b = 0 \end{cases}.$$

Define

$$G : \ell^1_B \rightarrow \ell_2$$

by

$$G(\sum_{b \in B} \alpha_{\epsilon, b} \delta_b) = \sum_{b \in B} \alpha_{\epsilon, b} f(b).$$

(*) See the appendix for a generalization of Theorem 2 proved by Yoav Benyamini.
Then
\[G F = f, \ G \text{ is linear with} \]
\[\|G\| \leq D \|f\|_{\ell^1}, \text{ and } \|F\|_{\ell^1} \leq 2/\varepsilon. \]

A weakened form of Grothendieck's inequality (see section 2.6 in [9])
yields that \(G \) (as any bounded linear operator from an \(L_1 \) space into a
Hilbert space) factors through an \(\ell_\infty(N) \) space:
\[G = H J, \ |J| = 1, \|H\| \leq 3 \|G\|, \]
\[J : \ell^B_1 \to \ell_\infty(N), \ H : \ell_\infty(N) \to \ell_2. \]

By the non-linear Hahn-Banach Theorem the mapping \(J F \) has an extension
\[E : X \to \ell_\infty(N) \text{ which satisfies} \]
\[\|E\|_{\ell^1} \leq \|J F\|_{\ell^1} \leq 2/\varepsilon. \]

Then \(\tilde{E} = H E \) extends \(f \) and \(\|\tilde{E}\|_{\ell^1} \leq 6D \varepsilon \|f\|_{\ell^1} \), as desired. \(\Box \)

For the proof of Theorem 3, we need three well known facts which we state
as lemmas.

Lemma 2. Suppose that \(Y, X \) are normed spaces and \(f : S(Y) \to X \) is Lipschitz
with \(f(0) = 0 \). Then the positively homogeneous extension of \(f \), defined for
\(y \in Y \) by
\[\tilde{f}(y) = \|y\| f \left(\frac{y}{\|y\|} \right), \ (y \neq 0); \quad \tilde{f}(0) = 0 \]
is Lipschitz and
\[\|\tilde{f}\|_{\ell^1} \leq 2 \|f\|_{\ell^1} + \|f\|_{\ell^\infty}. \]

Proof. Given \(y_1, y_2 \in Y \) with \(0 < \|y_1\| \leq \|y_2\|, \)
\[\|\tilde{f}(y_1) - \tilde{f}(y_2)\| \leq \|y_1\| f \left(\frac{y_1}{\|y_1\|} \right) - \|y_2\| f \left(\frac{y_2}{\|y_2\|} \right) + \|y_2\| \| f \left(\frac{y_1}{\|y_1\|} \right) - f \left(\frac{y_2}{\|y_2\|} \right) \|
\]
\[= \left(\|y_2\| - \|y_1\| \right) \| f \left(\frac{y_1}{\|y_1\|} \right) \| + \|y_2\| \|f\|_{\ell^1} \| \left(\frac{y_1}{\|y_1\|} - \frac{y_2}{\|y_2\|} \right) \|
\]
\[\leq \|y_1 - y_2\| \|f\|_{\ell^\infty} + \|f\|_{\ell^1} \| \left(\frac{y_2}{\|y_1\|} - y_2 \right) \|
LEMMA 3. If Y is an n-dimensional Banach space and $0 < \varepsilon$, then $S(Y)$ admits an ε-net of cardinality at most $(1 + 4/\varepsilon)^n$.

PROOF. Let M be a subset of $S(Y)$ maximal with respect to $\|x - y\| \geq \varepsilon$ for all $x \neq y \in M$.

Then the sets

$$b(y, \varepsilon/2) \cap S(Y), \quad (y \in M)$$

are pairwise disjoint hence so are the sets

$$b(y, \varepsilon/4), \quad (y \in M).$$

Since these last sets are all contained in $b(1 + \varepsilon/4)$, we have that

$$\text{card } M \cdot \text{vol } b(\varepsilon/4) \leq \text{vol } b(1 + \varepsilon/4)$$

so that

$$\text{card } M \leq \left[\frac{4}{\varepsilon} (1 + \varepsilon/4)\right]^n. \quad \square$$

LEMMA 4. There is a constant $\delta > 0$ so that for each $1 \leq p < 2$ and each $N = 1, 2, \ldots$, L^p contains a subspace E such that

$$d(E, \ell^N_2) \leq 2$$

and every projection from L^p onto E has norm at least

$$\delta N \frac{1}{1/p - 1/2}.$$

PROOF. Given a finite dimensional Banach space X and $1 \leq p < \infty$, let

$$\gamma_p(X) = \inf \{\|T\| : T : X \to L^p, \; S : L_p \to X, \; S \circ T = I_X\}.$$

So $\gamma_p(X)$ is the projection constant of X, hence by [4], [12]

$$\gamma_1(\ell^N_2) = \gamma_p(\ell^N_2) = \sqrt{2n/\pi}.$$

This gives the $p = 1$ case.
For $1 < p < 2$ we reduce to the case $p = 1$ by using Example 3.1 of [2],
which asserts that there is a constant $C < \infty$ so that for $1 \leq p < 2$ ℓ_p^N contains a subspace E with $d(E, \ell_2^N) \leq 2$. Since, obviously,
\[
d(\ell_p^N, \ell_2^N) \leq (CN)^{1 - 1/p}
\]
we get that if E is K-complemented in ℓ_p^N, then
\[
\pi^{-1/2} (2n)^{1/2} = \gamma_1(\ell_2^N) \leq d(E, \ell_2^N) d(\ell_p^N, \ell_2^N) K
\]
\[
\leq 2 (CN)^{1 - 1/p} K. \quad \square
\]

The next piece of background information we need for Theorem 3 is a linearization result which is an easy consequence of the results in [8].

Proposition 1. Suppose $X \subset Y$ and Z are Banach spaces, $f : Y \to Z$ is Lipschitz, and $U : X \to Z$ is bounded, linear. Then there is a linear operator $G : Z^* \to Y^*$ so that $\|G\| \leq \|f\|_{\ell_1^p}$ and
\[
\|R_2 G - U^*\| \leq \|f_X - U\|_{\ell_1^p},
\]
where R_2 is the natural restriction map from Y^* onto X^*.

Remark. Note that if Z is reflexive, the mapping $F = G^*|_Y : Y \to Z$ satisfies $\|F\| \leq \|f\|_{\ell_1^p}$ and $\|F |_X - U\| \leq \|f |_X - U\|_{\ell_1^p}$.

Proof. We first recall some notation from [8]. If Y is a Banach space, Y^θ denotes the Banach space of all scalar valued Lipschitz functions y^θ from Y for which $y^\theta(0) = 0$, with the norm $\|y^\theta\|_{\ell_1^p}$. There is an obvious isometric inclusion from Y^* into Y^θ. For a Lipschitz mapping $f : Y \to Z$, Z a normed space, we can define a linear mapping
\[
f^\theta : Z^* \to Y^\theta \text{ by } f^\theta z = z f.
\]
Given Banach spaces $X \subset Y$, Theorem 2 of [8] asserts that there are norm one linear projections
\[
P_Y : Y^\theta \to Y^*, \quad P_X : X^\theta \to X^*
\]
so that
\[
P_X R_1 = R_2 P_Y,
\]
where R_1 is the restriction mapping from Y^* onto X^*. Thus if $X \subset Y$, f, U, Z are as in the hypothesis of Proposition 1, the linear mapping $P_Y f^*$ satisfies

$$
\|P_Y f^*\| \leq \|f\|_{\text{lip}}, \quad R_Z P_Y f^* = P_X R_1 f^*.
$$

Since $U: X \to Z$ is linear,

$$
U^* = P_X U^*
$$

so

$$
\|R_Z P_Y f^* - U^*\| = \|P_X (R_1 f^* - U^*)\|
$$

$$
\leq \|R_1 f^* - U^*\| = \sup_{z^* \in S(Z^*)} \|R_1 f^* z^* - U^* z^*\|
$$

$$
= \sup_{z^* \in S(Z^*)} \| (z^* f) \| \leq \|f\|_{X^*} \|U\|_{\text{lip}}. \quad \square
$$

The final lemma we use in the proof of Theorem 3 is a smoothing result for homogeneous Lipschitz functions.

Lemma 5. Suppose $X \subset Y$ and Z are Banach spaces with $\dim X = k < \infty$, $F: Y \to Z$ is Lipschitz with F positively homogeneous (i.e. $F(\lambda y) = \lambda F(y)$ for $\lambda \geq 0$, $y \in Y$) and $U: X \to Z$ is linear. Then there is a positively homogeneous Lipschitz mapping

$$
\mathcal{F}: Y \to Z
$$

which satisfies

1. $\|\mathcal{F} \|_{X^*} \leq (6k + 2) \|F\|_{S(X^*)} \|U\|_{S(X^*)}$

2. $\|\mathcal{F}\|_{\text{lip}} \leq 4 \|F\|_{\text{lip}}$.

Proof. For $y \in S(Y)$ define

$$
\mathcal{F} y = \int_{B_X(1)} F(y + x) \, d\mu(x)
$$

where $\mu(\cdot)$ is Haar measure on $X (= \mathbb{R}^k)$ normalized so that

$$
\mu(B_X(1)) = 1.
$$

For $y_1, y_2 \in S(Y)$ we have
\[\| \hat{F} y_1 - \hat{F} y_2 \| \leq \int_{B_X(1)} \| F(y_1 + x) - F(y_2 + x) \| \, d\mu(x) \]
\[\leq \| F \|_{\ell^p} \| y_1 - y_2 \| \]

so

\[\| \hat{F} \|_{\ell^p} \leq \| F \|_{\ell^p} . \]

For \(x_1, x_2 \in S(X) \) with \(\| x_1 - x_2 \| = \delta > 0 \) we have, since \(U \) is linear, that

\[\| (\hat{F} - U) x_1 - (\hat{F} - U) x_2 \| = \]

\[\| \int_{B_X(1)} F(x_1 + x) \, d\mu(x) - \int_{B_X(1)} U(x_1 + x) \, d\mu(x) - \int_{B_X(1)} F(x_2 + x) \, d\mu(x) + \]

\[\int_{B_X(1)} U(x_2 + x) \, d\mu(x) \| \leq \]

\[\leq \int_{B_X(1)} \| Fx - Ux \| \, d\mu(x) \]

\[\leq \sup_{x \in B_X(2)} \| Fx - Ux \| \mu [B_X(x_1; 1) \Delta B_X(x_2; 1)] \]

\[= 2 \sup_{x \in B_X(1)} \| Fx - Ux \| \mu [B_X(x_1; 1) \Delta B_X(x_2; 1)] \quad \text{[since } F \text{ is positively homogeneous]} \]

Since

\[B_X(x_1; 1) \Delta B_X(x_2; 1) \subset [B_X(x_1; 1) \sim B_X(x_1; 1-5)] \cup [B_X(x_2; 1 \sim B_X(x_2; 1-5)] \]

we have if \(\delta \leq 1 \) that

\[\mu [B_X(x_2; 1) \Delta B_X(x_2; 1)] \leq 2 [1 - (1-5)^{k}] \]

\[\leq 2 \, k \, \delta \]

and hence for all \(x_1, x_2 \in S(X) \) that

\[\| (\hat{F} - U) x_1 - (\hat{F} - U) x_2 \| \leq 4k \| F \|_{S(X)} - U \|_{S(X)} \| x_1 - x_2 \| \]

whence
Finally, note that the positive homogeniety of F implies that

$$\|F\|_\infty \leq 2 \|F\|_{L^p}$$

and

$$\|\hat{F}\|_\infty \leq 2 \|\hat{F}\|_{L^p} \leq 2 \|F\|_\infty \leq 2 \|F\|_{L^p}.$$

It now follows from Lemma 2 that the positively homogeneous extension \hat{F} of F satisfies the conclusions of Lemma 5.

THEOREM 3. There is a constant $\tau > 0$ so that for all $n = 2, 3, 4, \ldots$ and all $1 \leq p < 2$,

$$L(p, n) \geq \tau \left(\frac{\log n}{\log \log n} \right)^{1/p - 1/2}.$$

REMARK. Since $L(\infty, n) \geq L(1, n)$, we get the lower estimate for $L(\infty, n)$ mentioned in the introduction.

PROOF. Given p and n, for a certain value of $N = N(n)$ to be specified later choose a subspace E of L_p with $d(E, \ell_2^N) \leq 2$ and E only $\delta N^{1/p - 1/2}$-complemented in L_p (Lemma 4). For a value $\varepsilon = \varepsilon(n) > 0$ to be specified later, let A be a minimal ε-net of $S(E)$, so, by Lemma 3,

$$\text{card } A \leq (1 + 4/\varepsilon)^N.$$

One relation among n, N, ε we need is

$$1 \leq n \leq (1 + 4/\varepsilon)^N.$$

Let $f : A \cup \{0\} \to E$ be the identify map. Since $d(E, \ell_2^N) \leq 2$, we can by Lemma 2 get a positively homogeneous extension $\hat{f} : L_p \to E$ of f so that

$$\|\hat{f}\|_{L^p} \leq 6 L(p, n).$$

Since $\hat{f}(a) = f(a) = a$ for $a \in A$ and A is an ε-net for $S(E)$, we get that for $x \in S(E)$,

$$\|\hat{f}(x) - x\| \leq (6 L(p, n) + 1) \varepsilon.$$

Therefore, from Lemma 5 we get a Lipschitz mapping $\hat{f} : L_p \to E$ which satisfies

$$\|\hat{f}\|_{L^p} \leq 24 L(p, n).$$

(1.5)

$$\|\hat{f}\|_{L^p} \leq (8N + 2)(6 L(p, n) + 1) \varepsilon.$$
Note that if

\[(1.6) \quad (8N + 2)(6L(p,n) + 1)\epsilon \leq 1/2,\]

\[(1.5) \quad \text{implies that there is a linear projection from } L_p \text{ onto } E \text{ with norm at most } 48L(p,n), \text{ so we can conclude that} \]

\[L(p,n) > \frac{5}{48}N^{1/p} - 1/2.\]

Finally, we just need to observe that (1.4) and (1.6) are satisfied (at least for sufficiently large \(n\)) if we set

\[\epsilon = \frac{\log n}{2 \log \log n}, \quad N = \frac{\log n}{2 \log \log n}.
\]

2. OPEN PROBLEMS.

Besides the obvious question left open by the preceding discussion (i.e. whether the estimate for \(L(\omega, n)\) given in Theorem 1 is indeed the best possible), there are several other problems which arise naturally in the present context. We mention here only some of them.

PROBLEM 1. \text{Is it true that for } 1 < p < 2, \text{ every subset } X \text{ of } L(0,1), \text{ and every Lipschitz map } f \text{ from } X \text{ into } \ell_2^k \text{ there is an extension } \tilde{f} \text{ of } f \text{ from } L_p(0,1) \text{ into } \ell_2^k \text{ with}

\[(2.1) \quad \|\tilde{f}\|_{\ell_1^p} \leq C(p)\|f\|_{\ell_1^p} k^{1/p} - 1/2\]

where \(C(p)\) depends only on \(p\)?

A positive answer to problem 1 combined with Lemma 1 above will of course provide an alternative proof to the result of Marcus and Pisier [10] mentioned in the introduction. The linear version of problem 1 (where \(X\) is a subspace and \(f\) a linear operator) is known to be true (cf. [7] and [3]).

PROBLEM 2. \text{What happens in the Marcus-Pisier theorem if } 2 < p < \infty? \text{ Is the Lipschitz analogue of Maurey's extension theorem [11] (cf. also [3]) true? In other words, is it true that for } 2 < p < \infty \text{ there is a } c(p) \text{ such that for every Lipschitz map } f \text{ from a subset } X \text{ of } L_p(0,1) \text{ into } \ell_2 \text{ there is a Lipschitz extension } \tilde{f} \text{ from } L_p(0,1) \text{ into } \ell_2 \text{ with}

\[\|\tilde{f}\|_{\ell_1^p} \leq c(p)\|f\|_{\ell_1^p} ?\]
PROBLEM 3. What are the analogues of Lemma 1 in the setting of Banach spaces different from Hilbert spaces? The most interesting special case seems to be concerning the spaces ℓ^n_m. It is well known that every finite metric space $X = \{x_i\}_{i=1}^n$ embeds isometrically into ℓ^n_m (the point x_i is mapped to the n-tuple $(d(x_1, x_i), d(x_2, x_i), \ldots, d(x_n, x_i))$ in ℓ^n_m). Hence in view of Lemma 1 it is quite natural to ask the following. Does there exist for all $\varepsilon > 0$ (or alternatively for some $\varepsilon > 0$) a constant $K(\varepsilon)$ so that for every metric space X with cardinality n there is a Banach space Y with $\dim Y \leq K(\varepsilon) \log n$ and a map f from X into Y so that

$$
\|f\|_{\text{lip}} \|f^{-1}\|_{\text{lip}} \leq 1 + \varepsilon.
$$

A weaker version of Problem 3 is

PROBLEM 4. It is true that for every metric space X with cardinality n there is a subset \tilde{X} in ℓ^2 and a Lipschitz map F from X onto \tilde{X} so that

$$
\|F\|_{\text{lip}} \|F^{-1}\|_{\text{lip}} \leq K \sqrt{\log n}
$$

for some absolute constant K?

Since for every Banach space Y with $\dim Y = k$ we have $d(Y, \ell^k_2) \leq \sqrt{k}$ (cf. [6]) it is clear that a positive answer to problem 3 implies a positive answer to problem 4. V. Milman pointed out to us that it follows easily from an inequality of Enflo (cf. [1]) that (2.2), if true, gives the best possible estimate. (In the notation of [1], observe that the "m-cube"

$$
x_\theta = (\theta_1, \theta_2, \ldots, \theta_m) (\theta \in \{-1, 1\}^m)
$$

in ℓ^m_1 has all "diagonals" of length $2m$ and all "edges" of length 2, so that if F is any Lipschitz mapping from these 2^m points in ℓ^m_1 into a Hilbert space, the corollary in [1] implies that

$$
\|F\|_{\ell^m_1} \|F^{-1}\|_{\ell^m_1} \geq m^{1/2}.
$$

3. APPENDIX.

After this note was written, Yoav Benyamini discovered that Theorem 2 remains valid if ℓ^2_2 is replaced with any Banach space. He kindly allowed us to reproduce here his proof. The main lemma Benyamini uses is:

LEMA 6. Let Γ be an indexing set and let $\{e_\gamma\}_{\gamma \in \Gamma}$ be the unit vector basis for $c_0(\Gamma)$. Set
Then

(i) there is a retraction G from $\ell_\infty(\Gamma)$ onto B which satisfies

$\|G\|_{\text{lip}} \leq 2$

(ii) there is a mapping H from $\ell_\infty(\Gamma)$ into A which satisfies

$\|H\|_{\text{lip}} \leq 4$ and $He = e_\gamma$ for all $\gamma \in \Gamma$.

PROOF. Since the mapping $x \mapsto x^+$ is a contractive retraction from $\ell_\infty(\Gamma)$ onto its positive cone, $\ell_\infty(\Gamma)^+$, to prove (i) it is enough to define G only on $\ell_\infty(\Gamma)^+$.

For $y \in \ell_\infty(\Gamma)^+$, let

$g(y) = \inf \{ t : \| (y - te)^+ \|_1 \leq 1 \}$

where $e \in \ell_\infty(\Gamma)$ is the function identically equal to one and $\| \cdot \|_1$ is the usual norm in $\ell_1(\Gamma)$. Clearly the inf is actually a minimum and $0 \leq g(y) \leq \| y \|_\infty$. Note that

$|g(y) - g(z)| \leq \| y - z \|_\infty$.

Indeed, assume that $g(y) \geq g(z)$. Then

$y - [g(z) + \| y - z \|_\infty e] \leq y - g(z)e + z - y \leq z - g(z)e$

and hence

$\| (y - [g(z) + \| y - z \|_\infty e]^e) \|_1 \leq 1$;

that is

$g(y) \leq g(z) + \| y - z \|_\infty$.

Now set for $y \in \ell_\infty(\Gamma)^+$

$G(y) = (y - g(y)e)^+$.

To prove (ii), it is enough, in view of (i), to define H on B with $\|H\|_{B} \|_{\text{lip}} \leq 2$. For $y \in B$, $y = \{ y(\gamma) \}_{\gamma \in \Gamma}$, defined H_y by

$H_y(\gamma) = (2y(\gamma) - 1)^+$.
For \(y \in B \), there is at most one \(\gamma \in \Gamma \) for which \(y(\gamma) > \frac{1}{2} \), hence \(HB \subset A \). Evidently \(H_\gamma = e_\gamma \) for \(\gamma \in \Gamma \) and \(\|H\|_{\ell^1} \leq 2 \).

THEOREM 2 (Y. Benyamini). Suppose that \(X \) is a metric space, \(Y \) is a subset of \(X \) with \(d(x,y) \geq \varepsilon > 0 \) for all \(x \neq y \in Y \), \(Z \) is a Banach space, and \(f: Y \to Z \) is Lipschitz. Then there is an extension \(\tilde{f}: X \to Z \) of \(f \) so that

\[
\|\tilde{f}\|_{\ell^1} \leq (4D/\varepsilon)\|f\|_{\ell^1}
\]

where \(D \) is the diameter of \(Y \).

PROOF. Represent

\(Y = \{0\} \cup \{y_\gamma : \gamma \in \Gamma\} \)

and assume, by translating \(f \), that \(f(0) = 0 \). We can factor \(f \) through the subset \(C = \{0\} \cup \{e_\gamma : \gamma \in \Gamma\} \) of \(\ell^\infty(\Gamma) \) by defining \(g: Y \to C \), \(h: C \to Z \) by

\[
g(y_\gamma) = e_\gamma, \quad g(0) = 0
\]

\[
h(e_\gamma) = f(y_\gamma), \quad h(0) = 0.
\]

Evidently,

\[
\|g\|_{\ell^1} \leq 1/\varepsilon, \quad \|h\|_{\ell^1} \leq D\|f\|_{\ell^1}.
\]

By the non-linear Hahn-Banach theorem, \(g \) has an extension to a function \(\tilde{g}: X \to \ell^\infty(\Gamma) \) with \(\|\tilde{g}\|_{\ell^1} = \|g\|_{\ell^1} \), so to complete the proof, it suffices to extend \(h \) to a function \(\tilde{h}: B \to Z \) with \(\|\tilde{h}\|_{\ell^1} = \|h\|_{\ell^1} \) and apply Lemma 6(ii).

Define for \(0 \leq t \leq 1 \) and \(\gamma \in \Gamma \)

\[
\tilde{h}(te_\gamma) = th(e_\gamma).
\]

If \(1 \geq t \geq s \geq 0 \) and \(\gamma \neq \Delta \in \Gamma \) then

\[
\|\tilde{h}(te_\gamma) - \tilde{h}(se_\Delta)\| \leq (t-s)\|h(e_\gamma)\| + s \|h(e_\Delta) - h(e_\gamma)\|
\]

\[
\leq (t-s)\|h\|_{\ell^1} + s\|h\|_{\ell^1} = \|h\|_{\ell^1}\|te_\gamma - se_\Delta\|_{\ell^\infty},
\]

so \(\|\tilde{h}\|_{\ell^1} = \|h\|_{\ell^1} \).
REFERENCES

William B. Johnson
The Ohio State University and
Texas A & M University

Joram Lindenstrauss
The Hebrew University of Jerusalem,
Texas A & M University, and
The Ohio State University