
 – 1 –

Chris Piech and Mehran Sahami Handout #9
CS 106A October 5, 2020

Image Reference Guide
Based on materials by Nick Parlante and a handout by Nicholas Bowman, Sonja Johnson-Yu, and Kylie Jue.

Install Pillow
The SimpleImage module we are covering in class uses the "Pillow" library. A library is a
body of already written code which you import and use, and in this case the Pillow library
contains code to manipulate images. In order for SimpleImage to work properly, you need
to install Pillow on your machine.

To install Pillow, you should first open a "terminal" window: the easiest way to do this is
to use the “Terminal” tab within PyCharm on the lower-left (next to the “Run” and “Python
Console” tabs). Type the following command shown in bold below into the Terminal.
(Note that "Pillow" starts with an uppercase P.) On Windows, type “py” instead of
“python3”):

> python3 -m pip install Pillow

 ...prints stuff...
Successfully installed Pillow-7.1.1

To test that Pillow is working, type the following command (in bold) into a terminal inside
any assignment or lecture example folder that contains the file simpleimage.py. On
Windows, type “py” instead of “python3”):

(inside an assignment or lecture project that uses SimpleImage)
> python3 simpleimage.py
yellow rectangle with green stripe appears

This runs the simpleimage.py code included in the folder. When run like this, you
should see a big yellow rectangle with a small green stripe on the right pop up. If you
cannot get Pillow installed successfully, please post on the Ed discussion forum or go
to the course staff office hours for help.

Note: You only have to install Pillow once. After you have successfully installed it, the
library will be available for use in all future assignments and lecture examples.

Juliette woodrow

 – 2 –

Basic SimpleImage Functionality
The SimpleImage code used in CS106A provides you with some basic digital image
processing tools:

● Reading an image from a filename. This function reads the image from the
specified file and returns a SimpleImage object that can be stored in a variable to
refer to the image.

image = SimpleImage(filename)

● “For-each” loop over all pixels in the image. This capability gives you easy
access to each of the pixels in the image so that you can apply the same code to all
of them.

for pixel in image:
 # Use pixel in here

● Accessing data inside a pixel. Each pixel has properties that can be accessed with
the “dot” syntax. These properties include its RGB (red, blue, and green)
components, as well as the location of the pixel in its corresponding image. The
pixel’s color properties can be accessed and modified, but the pixel’s location
properties cannot be directly modified.

Color properties: pixel.red, pixel.green, pixel.blue
Location properties: pixel.x, pixel.y

● Displaying the image. Each image can be displayed on your computer using the

.show() function. Usually, you will write functions that return images and then
display the images you want to see inside the main() (or some other) function.

image.show()

● Accessing image size. Each image has two attributes – height and width – that
can be directly accessed from the image. This is useful for algorithms that rely on
the size of the image in some way.

image.width, image.height

● Enforcing valid RGB values. The RGB values are stored as integer values in the
range 0-255. Each pixel has a red value, a green value, and a blue value. RGB
values outside the valid range are changed to be an integer between 0-255 in the
following manner:

a. Setting a value to a float like 3.5 is changed to the int 3 internally
b. Setting a value larger than 255 is changed to 255 internally
c. Setting a value less than 0 is changed to 0 internally

 – 3 –

Advanced SimpleImage Functionality
As you progress into creating your own images or working on more complicated image
algorithms, there are some more advanced features of SimpleImage that you can take
advantage of.

● Creating a blank image with a specified height and width. This is useful for
starting off with a “blank canvas” that you can populate in an algorithmically
interesting way. Both of the lines of code below are valid ways of making a blank
image with a width of 200 pixels and a height of 100 pixels.

image = SimpleImage.blank(200, 100)
image = SimpleImage.blank(width=200, height=100)

● Accessing a pixel by its x, y coordinates. The top left of the image corresponds to
x=0, y=0. x-coordinates get larger as you move to the right, and y-coordinates get
larger as you move down.

pixel = image.get_pixel(x, y)

Note: x and y should be integers and x must be in the range 0 to width-1
(inclusive) and y must be in the range 0 to height-1 (inclusive).

● Setting the value of a certain pixel in an image by its x, y coordinates. If you
have a pixel and you want to place it directly into an image, you can do so with the
following function.

image.set_pixel(x, y, pixel)

● Resizing an image to be the same size as another image. This functions takes in
as a parameter the target_image whose size you want to match and modifies
image so that it has identical dimensions to the target image. This function is
especially helpful when working on problems with two images (for example, doing
“bluescreens” where one image has a blue background that is replaced with pixels
from another image). This function helps ensure that the sizes of the two images
match up.

image.make_as_big_as(target_image)

 – 4 –

Range Loops with SimpleImage
The "for each" loop described above is the easiest way to loop over all of the pixels in an
image. However, sometimes you want to write loops that access pixels by their x, y
coordinates. The code below demonstrates the standard nested for loop pattern to access
all of the pixels in an image. The outer for loop iterates over the rows (starting with the top
row (y = 0) and moving on to the next row (y = 1)), and the inner for loop iterates over
the columns.

def example(filename):
 image = SimpleImage(filename)
 for y in range(image.height): # loop over all the rows
 fox x in range(image.width): # loop over all the columns
 pixel = image.get_pixel(x, y)
 # do something with pixel

 return image

