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Lecture 19

1 Viscosity

We now focus on the discretization of the viscosity term in the Navier-Stokes equations. Typically
the inviscid equations are called the Euler equations while the viscous equations are called the
Navier-Stokes equations.
For incompressible flow with nonzero viscosity we still have the same equation for conservation
of mass. It is given by
pt+u-Vp=0.

However, the momentum equation (in 2D) becomes
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where we have added the viscosity terms to the RHS of the equation. In vector form, this is can

be written as .
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Now consider the special case where u = constant in (1). In that case we can simplify the
viscosity term on the RHS as follows.
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Therefore for . = constant, the equations (1) become
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1.1 Discretization

In the projection method for incompressible flow the viscosity term is included in the computation
of u*, the intermediate velocity field. That is, the steps in the projection method become

1. Compute the intermediate velocity field u*

2. Solve an elliptic equation for the pressure
Ap=V-u*

3. Compute the divergence free velocity field u™t!
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where we have again assume that p = constant, and set p = pAL
Next we will discretize the viscous terms in (2). Since we are using a MAC grid and u* is

defined at the cell walls, we need the viscous term discretized at the cell walls. We approximate
the Laplacian of u at the grid point ¢ + %, j as

n n n n n n
u' . —2u] A u! ool ., —2u! Fut g
Z_lvj Z+17j + Z+§7j Z+17]_1 Z+17] + Z+17]+1
(Aun) 1 ~ 2 2 2 + 2 2 2
3 Az? Ay?

This is a second order central difference approximation. The problem with this approximation
is that it requires that At ~ Az? for stability. This is a severe restriction on the time step and we
would like to avoid it. One solution, due to Kim and Moin, is to treat the viscosity implicitly. So
for step 1 in the projection method, we solve the equation
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The term u” - Vu" is still treated the same as before. Then the terms at time step n will be on
the RHS, while the x terms are on the LHS. In the case of constant u, we get a decoupled linear
system of the form
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Another possibility is to use trapezoidal rule
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One problem in incompressible flow is that the numerical viscosity may be larger than the
physical viscosity. We want the numerical viscosity arising from the discretization of the u - Vu
term to be smaller than the physical viscosity Y-T.

Recall the first order upwind discretization of the advection equation

Ut + Uy = 0.
The discretization is
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Now suppose you want to solve
Ut + Uy = fUgg-

From the above, we see that using a first order upwind discretization for u, our modified equation

will be
Ax
Ut + Uy = N+T Uz -

1 is the real viscosity and % is the numerical viscosity. One of the big problems with solving
Navier-Stokes is that the numerical viscosity is often larger than the real viscosity.

2  Vorticity

Here we describe a method to counteract the numerical dissipation that damps out many interesting
features in the flow.
Taking the curl of the momentum equation
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where
Q=Vxu.
In 2D,
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So this is particularly nice in 2D as we get one scalar equation for Q (in 3D we still get a 3-vector).
Since 2 will be either positive or negative, the vorticity vector €2 is pointing either into or out of
the x — y plane. Vorticity can be thought of as a paddle wheel which is trying to spin the flow.
The direction of the spinning depends on the sign of €.

Some points of interest regarding vorticity are

e Vorticity is conserved.
e Vorticity stays confined in high Reynolds number flows.

Here we discuss a simple turbulence model due to Steinhoff. First we compute vorticity location
vectors
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Then we compute the paddle wheel force as
f=nxQ.

Steinhoft’s idea was to add a forcing term to the momentum equations
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It is interesting to note that if you linearize the forcing term, it looks like —Au.



