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Lecture 19

1 Viscosity

We now focus on the discretization of the viscosity term in the Navier-Stokes equations. Typically
the inviscid equations are called the Euler equations while the viscous equations are called the
Navier-Stokes equations.

For incompressible flow with nonzero viscosity we still have the same equation for conservation
of mass. It is given by

ρt + u · ∇ρ = 0.

However, the momentum equation (in 2D) becomes

{

ut + u · ∇u + px

ρ
=

(2µux)x+(µ(uy+vx))y

ρ

vt + u · ∇v +
py

ρ
=

(µ(uy+vx))x+(2µvy)y

ρ
− g

(1)

where we have added the viscosity terms to the RHS of the equation. In vector form, this is can
be written as

ut + u · ∇u +
∇p

ρ
= g +

(∇ · τ )T

ρ
.

Now consider the special case where µ = constant in (1). In that case we can simplify the
viscosity term on the RHS as follows.

(2µux)x + (µ(uy + vx))y
ρ

=
2µuxx + µuyy + µvxy

ρ

=
µ(uyy + uxx)

ρ
+

µ(uxx + vxy)

ρ

=
µ(uyy + uxx)

ρ
+

µ(ux + vy)x
ρ

=
µ(uyy + uxx)

ρ
+ 0

=
µ

ρ
∆u
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(µ(uy + vx))x + (2µvy)y
ρ

=
µuyx + µvxx + 2µvyy

ρ

=
µ(vxx + vyy)

ρ
+

µ(vyy + uxy)

ρ

=
µ(vxx + vyy)

ρ
+

µ(vy + ux)y
ρ

=
µ(vxx + vyy)

ρ
+ 0

=
µ

ρ
∆v

Therefore for µ = constant, the equations (1) become
{

ut + u · ∇u + px

ρ
= µ

ρ
∆u

vt + u · ∇v +
py

ρ
= µ

ρ
∆v − g

(2)

1.1 Discretization

In the projection method for incompressible flow the viscosity term is included in the computation
of u⋆, the intermediate velocity field. That is, the steps in the projection method become

1. Compute the intermediate velocity field u⋆

u⋆ − un

∆t
+ un · ∇un =

(∇ · τ )T

ρ
+ g

2. Solve an elliptic equation for the pressure

∆p̂ = ∇ · u⋆

3. Compute the divergence free velocity field un+1

un+1 − u⋆ + ∇p̂ = 0

where we have again assume that ρ = constant, and set p̂ = p∆t
ρ

.
Next we will discretize the viscous terms in (2). Since we are using a MAC grid and u⋆ is

defined at the cell walls, we need the viscous term discretized at the cell walls. We approximate
the Laplacian of u at the grid point i + 1

2 , j as

(∆un)i+ 1

2
,j ≈

un
i− 1

2
,j
− 2un

i+ 1

2
,j

+ un
i+ 3

2
,j

∆x2
+

un
i+ 1

2
,j−1

− 2un
i+ 1

2
,j

+ un
i+ 1

2
,j+1

∆y2

This is a second order central difference approximation. The problem with this approximation
is that it requires that ∆t ∼ ∆x2 for stability. This is a severe restriction on the time step and we
would like to avoid it. One solution, due to Kim and Moin, is to treat the viscosity implicitly. So
for step 1 in the projection method, we solve the equation

u⋆ − un

∆t
+ un · ∇un =

(∇ · τ ⋆)T

ρ
+ g
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The term un · ∇un is still treated the same as before. Then the terms at time step n will be on
the RHS, while the ⋆ terms are on the LHS. In the case of constant µ, we get a decoupled linear
system of the form

{

A1u = b1

A2v = b2

Another possibility is to use trapezoidal rule

u⋆ − un

∆t
+ un · ∇un =

(∇ · τ ⋆)T + (∇ · τn)T

2ρ
+ g

One problem in incompressible flow is that the numerical viscosity may be larger than the
physical viscosity. We want the numerical viscosity arising from the discretization of the u · ∇u

term to be smaller than the physical viscosity ∇·τ

ρ
.

Recall the first order upwind discretization of the advection equation

ut + ux = 0.

The discretization is

ut +
ui − ui−1

∆x
= 0.

⇒ ut +
ui −

(

ui − ∆x(ux)i + ∆x2

2 (uxx)i + O(∆x3)
)

∆x
= 0

⇒ ut + (ux)i −
∆x

2
(uxx)i = O(∆x2)

⇒ ut + (ux)i =
∆x

2
(uxx)i + O(∆x2)

Now suppose you want to solve
ut + ux = µuxx.

From the above, we see that using a first order upwind discretization for ux our modified equation
will be

ut + ux =

(

µ +
∆x

2

)

uxx.

µ is the real viscosity and ∆x
2 is the numerical viscosity. One of the big problems with solving

Navier-Stokes is that the numerical viscosity is often larger than the real viscosity.

2 Vorticity

Here we describe a method to counteract the numerical dissipation that damps out many interesting
features in the flow.

Taking the curl of the momentum equation

ut + u · ∇u +
∇p

ρ
= g
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gives

Ωt + u · ∇Ω− Ω · ∇u−
1

ρ2
∇p ×∇ρ = ∇× g

where
Ω = ∇× u.

In 2D,

Ω =

∣

∣

∣

∣

∣

∣

i j k
∂
∂x

∂
∂y

∂
∂z

u v 0

∣

∣

∣

∣

∣

∣

=





− ∂
∂z

v
∂
∂z

u
∂
∂x

v − ∂
∂y

u





Since
∂

∂z
u =

∂

∂z
v = 0

we have

Ω =





0
0

vx − uy



 =





0
0
Ω





So this is particularly nice in 2D as we get one scalar equation for Ω (in 3D we still get a 3-vector).
Since Ω will be either positive or negative, the vorticity vector Ω is pointing either into or out of
the x − y plane. Vorticity can be thought of as a paddle wheel which is trying to spin the flow.
The direction of the spinning depends on the sign of Ω.

Some points of interest regarding vorticity are

• Vorticity is conserved.

• Vorticity stays confined in high Reynolds number flows.

Here we discuss a simple turbulence model due to Steinhoff. First we compute vorticity location
vectors

n =
∇‖Ω‖

‖∇‖Ω‖‖
.

Then we compute the paddle wheel force as

f = n× Ω.

Steinhoff’s idea was to add a forcing term to the momentum equations

ut + u · ∇u +
∇p

ρ
= g + ǫ∆xf

It is interesting to note that if you linearize the forcing term, it looks like −∆u.
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