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Lecture 18

The full Navier-Stokes equations are
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where T is the temperature, k is the thermal conductivity, and

.o 20y + Mug + vy) p(ty + vg)
p(ty + vz) 2010y + Aug + vy)

T
Vu Vu
—u< Vo ) +u< Vo ) + Mug + vy)I
= p(Vu+vul) + \(V-u)L.

The parameter A is often chosen to make the V - 7 = 0. The latter criterion is called Stokes
Hypothesis and results in A = —%,u in 3D and A = —p in 2D. The Navier-Stokes equations simplify
under the incompressibility assumption to
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where 7 simplifies to
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1 Heat Equation

By removing the viscosity and forcing terms from equation 1 one has
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The assumptions that e and T satisfy the relationship

de = c,dT
simplifies equation 2 to
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which can be further simplified to the standard heat equation
T,= L v. (kvT) (3)
t = ey

by ignoring the effects of convection, i.e. setting u = 0. (Note that the assumption u = 0 will also
eliminate the viscosity and forcing terms from the energy equation.) If k is constant, this can be
written as

k
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Applying explicit Euler time discretization to equation 3 results in
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where either Dirichlet or Neumann boundary conditions can be applied on the boundaries of the
computational domain. Assuming that p and ¢, are constants allows us to rewrite this equation as
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with k = p%. Standard central differencing (second order accurate) can be used for the spatial
derivatives as in ) R
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is needed for stability. If we Ax = Ay, then this is
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where n is the dimension (n =2 in 2D and n = 3 in 3D).
Implicit Euler time discretization
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avoids this time step stability restriction. This equation can be rewritten as
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discretizing the V - (/;VT "+1) term using central differencing. For each unknown, TZ-"H, equation b
is used to fill in one row of a matrix creating a linear system of equations. Since the resulting matrix
is symmetric, a number of fast linear solvers can be used (e.g. a PCG method with an incomplete
Choleski preconditioner, see Golub and Van Loan [1]). Equation 4 is first order accurate in time and
second order accurate in space, and At needs to be chosen proportional to Az? in order to obtain
an overall asymptotic accuracy of O(Ax?). However, the stability of the implicit Euler method
allows one to chose At proportional to Az saving dramatically on CPU time. The Crank-Nicolson
scheme gl _n 1 )
B _ 7 n+1 7 n
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can be used to achieve second order accuracy in both space and time with At proportional to Az.
For the Crank-Nicolson scheme,
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is used to create a symmetric linear system of equations for the unknowns TZ-"H. Again, all spatial
derivatives are computed using standard central differencing.

Why not always use Crank-Nicholson, as it gives second order accuracy and no time step
restriction? Let us look at the solution as At — oco. Backward Euler gives

AT™ =0,
which is the correct steady state solution. Crank-Nicholson gives
AT = AT,

In 1D this is
Ta?;l = _T;:Lx

This shows that the curvature is changing sign at each time step. So the problem with Crank-
Nicholson is that as At gets very large, you get oscillations, whereas with backward Euler, you get
the steady-state solution.
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