CS205b/CME306

Lecture 17

1 Incompressible Flow

1.1 MAC Grid
Supplementary Reading: Osher and Fedkiw, §18.1, §18.2

Recall that the system of equations we must solve for incompressible flow is

V-u=0 (1)
pr+u-Vp=0 (2)

\Y%
ut—l—u-Vu—l—?p:g (3)
(4)

Harlow and Welch [2] proposed the use of a special grid for incompressible flow computations.
This specially defined grid decomposes the computational domain into cells with velocities defined
on the cell faces and scalars defined at cell centers. That is, in 2D, p; j, p;; are defined at cell
centers while u, 1 and Uj ja1 are defined at the appropriate cell faces.

Equation (2) is solved by first defining the cell center velocities with simple averaging

L Ui g T UL
ul,j - 2

R e
1)27] - 2

Then the spatial derivatives are evaluated in a straightforward manner, for example using 3rd order
accurate Hamilton-Jacobi ENO. The temporal derivative can be evaluated with a TVD RK scheme.

In order to update the velocity based on equation (3), we first need u and v at all the cell faces.
Again, we obtain the values by simple averaging. For example,

1
VieliT g (”z’—u—% T Vg4l T V51 F ”m’+%)'

Similarly, to get u values on the v faces, we compute the average

1
Ui =g (“i—é,j—l T UL UL T “i+§,j)'

The term MAC Grid stands for Marker-And-Cell. It refers to what the discretization was first
used for rather than describing the discretization itself.



1.2 Discretizing Divergence of Velocity

Supplementary Reading: Osher and Fedkiw, §18.3, §23.1

Here we discuss the discretization in 8 of the term V - u*. Since we are solving for the pres-
sure, which on the MAC grid lives at the cell centers, we need to discretize the term at the cell
centers. We have that

(V-u),; = (u + v;)m
U:'_l
772 4 O(AZ?) + O(AY?)

* * *
u. .U . v -
_ Z+%7] 2_%7] + 27]—"_%
Ax Ay

So we have used the intermediate velocity stored at the cell faces to get a second order accurate
approximation to V - u* at the cell centers.

1.3 Semi-Lagrangian Velocity Advection

Evolving the momentum equation 3 is done by first advecting velocities and applying body forces
with 6 to obtain u*. Then, equation 6 is evaluated by solving the elliptic Poisson’s equation,
followed by applying the resulting pressure to obtain a final velocity u”*!. There is no time step
restriction for second step, so the only CFL restriction is on the velocity advection. Therefore, if
we use the semi-Lagrangian method for the velocity advection we can eliminate the remaining time
step restriction. For u*, the method is

u; =u" (xj — u;»LAt)

For v* we must also account for gravity, so we have
v =v"(x; —ujAt) - Atyg
where we are computing
v+u-Vo=—g.

This is a Godunov splitting, which is first order accurate.

1.4 Projection Method

In order to update the velocity, we use the projection method due to Chorin [1]. The projection
method is applied by first computing an intermediate velocity field u* ignoring the pressure term,

u*—u”

oVt = g, (5)

and then computing a divergence free velocity field u”+!,

un+1 —u* vpn-l—l
At + pn—i-l

=0, (6)

using the pressure as a correction. Note that combining equations 5 and 6 to eliminate u* results
in equation 3.



Taking the divergence of equation 6 results in

\V4 n+1 \VART 4
v () - )
P At
after setting V - u™t! = 0, i.e. after assuming that the new velocity field is divergence free.

equation 7 defines the pressure in terms of the value of At used in equation 5. Defining a scaled
pressure of p* = pAt leads to

Vp*
pn—i-l =0

V *
A <pnl-i)-l> =V-u
in place of equations 6 and 7 where p* does not depend on At. When the density is spatially
constant, we can define p = pAt/p leading to

un+1 —u* +

and

utl w4+ Vp=0

and
Ap=V . -u* (8)

where p does not depend on At or p.
This method utilizes the Helmholtz-Hodge decomposition of the vector field u*,

u =u"t 4+ Vp.

In general, the Helmholtz-Hodge decomposition of a vector field expresses the vector field as a
divergence free vector field plus the gradient of a scalar field.

1.5 Computing Boundary Conditions

We have shown how to discretize the Poisson equation and handle Dirichlet and Neumann boundary
conditions. We have not yet said much about how to obtain these boundary conditions. A typical
scenerio that leads to a Dirichlet boundary condition is a free surface, such as the surface of the
water in a glass. In this case, the pressure will be 1 atm, the pressure that the air applies to the
surface of the water. The other type of boundary condition that occurs in the example of a glass of
water is the boundary condition between the water and the walls of the container. This boundary
condition may be described by requiring the velocity component at the cell face of the boundary
to be equal to the velocity of the wall itself. If the walls of the container are stationary, then this
velocity component will be zero. Unfortunately, this is a condition on velocity, not a condition on
pressure as is required by the Poisson discretization. To obtain this boundary condition, we begin
with 6. Lets also assume that the boundary condition is on the side of the container, so that we
are considering the x direction, so that we should consider

un+1 —u*
+P

At p



For this face we have u"t! = upc, which simply states that we should be computing a velocity
that agrees with the velocity upc of the container.

upc —u* | Py
——+—=0.
At + P
Solving this for the pressure derivative yields
_ upc —u*

This procedure may be simplified somewhat by observing that we may simply enforce the boundary
conditions on w*, so that it need not be computed but can just be assigned u* = upc. Then, the
corresponding pressure condition becomes p, = 0.

1.6 Algorithm Overview

We now have the following steps in updating the velocity field for incompressible flow using the
projection method:

1. Compute the intermediate velocity field u* (at cell faces)
* 1M
% +u-Vu= g (9)
2. Solve an elliptic equation for the pressure (at cell centers)
1 V.u*
. —_— = 1
(i) -5

1

3. Compute the divergence free velocity field u™* (at cell faces)

un—l—l_u*—’_@:

—a o, 0 (11)

We can multiply p by At, to get p* = pAt, and rewrite steps 2 and 3 as

2a.
V- <1Vp*> =V.u* (12)
p
3a. .
u" w4 VTP =0 (13)

_ pAt

If p is constant, then we can move it under the V operator and defining p o> We can rewrite

steps 2 and 3 as
2b.
Ap=V-u* (14)

3b.
utl — w4+ Vp=0 (15)



References

[1] Chorin, A., A Numerical Method for Solving Incompressible Viscous Flow Problems, J. Com-
put. Phys. 2, 12-26 (1967).

[2] Harlow, F. and Welch, J., Numerical Calculation of Time-Dependent Viscous Incompressible
Flow of Fluid with a Free Surface, The Physics of Fluids 8, 2182-2189 (1965).



