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Lecture 15

1 Incompressible Flow

Supplementary Reading: Osher and Fedkiw, §18.1, §18.2

Recall the stability condition for compressible flow

max
Ω

{|u + c|, |u|, |u − c|} <
∆x

∆t

where the quantity on the left of the inequality is the physical wave speed and the quantity on the
right is the numerical wave speed. Then the time step is given by

∆t = α
∆x

maxΩ{|u + c|, |u|, |u − c|}

where α is the CFL number, α < 1.
For example, we might have u = 1, c = 300, so that

|u + c| = 301, |u| = 1, |u − c| = 299.

Observe that the u±c fields impose a much more severe restriction on the time step than the u field.
If |u| ≪ |c| and we only care about the linear flow phenomena, i.e., the phenomena corresponding to
the u field, then we can avoid this difficulty by modeling the flow as incompressible. The assumption
of incompressibility is valid in the limit as c

u
→ ∞ and is equivalent to the divergence free condition

∇ · u = 0. In fact, the definition of incompressibility for a velocity field u is that ∇ · u = 0.
Modeling the flow as incompressible allows us to eliminate the severe time step restriction due

to the u±c fields, and focus on the u field. As a result, we lose the nonlinear behavior (e.g., shocks,
rarefactions) associated with the u ± c fields.

1.1 Equations

Starting from conservation of mass, momentum and energy, the equations for incompressible flow
are derived using the divergence free condition, ∇·u = 0, which implies that there is no compression
or expansion in the flow field. Note that in 1D, this is just ux = 0, which implies that u is spatially
constant.
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1.1.1 Conservation of Mass

In 1D, the equation for conservation of mass is

ρt + (ρu)x = 0.

Applying the chain rule, we get
ρt + ρxu + ρux = 0.

Since the flow is incompressible, ∇ · u = 0 which reduces to ux = 0 in 1D, so that the equation is
simply

ρt + uρx = 0.

In multiple dimension, the equation is given by

ρt + u · ∇ρ = 0.

1.1.2 Conservation of Momentum

Starting with the equation for conservation of mass,

(ρu)t + (ρu2 + p)x = 0

we then apply the chain rule to get

ρtu + ρut + ρuux + u(ρu)x + px = 0.

We combine the first and fourth terms

u(ρt + (ρu)x) + ρut + ρuux + px = 0.

Note that the quantity in parentheses is 0 from conservation of mass, so that

ρut + ρuux + px = 0.

By incompressibility, the second term is 0, so that we are left with

ρut + px = 0.

Dividing by ρ, we get

ut +
px

ρ
= 0.

In multiple dimension, the equation is given by

ut + u · ∇u +
∇p

ρ
= 0.
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1.1.3 Conservation of Energy

The equation for conservation of energy in 1D is

Et + [(E + p)u]x = 0.

Substituting E = ρe + 1

2
ρu2, we get

(

ρe +
1

2
ρu2

)

t

+

[(

ρe +
1

2
ρu2 + p

)

u

]

x

= 0.

Differentiating, we have

(

e +
1

2
u2

)

ρt + ρet + ρuut +

(

ρe +
1

2
ρu2 + p

)

ux +

(

e +
1

2
u2

)

uρx + ρuex + ρuux + upx = 0

Since ux = 0, this becomes

(

e +
1

2
u2

)

ρt + ρet + ρuut +

(

e +
1

2
u2

)

uρx + ρuex + upx = 0

Rearranging terms, we have

(

e +
1

2
u2

)

(ρt + uρx) + uρ

(

ut +
px

ρ

)

+ ρet + ρuex = 0

By the equations for conservation of mass and conservation of momentum, this reduces to

ρet + ρuex = 0

Dividing by ρ, we get
et + uex = 0

In multiple dimensions the equation for conservation of energy is

et + u · ∇e = 0

In summary, the equations for incompressible flow (in multiple spatial dimensions) are

ρt + u · ∇ρ = 0

ut + u · ∇u +
∇p

ρ
= 0

et + u · ∇e = 0

1.1.4 Decoupling from Energy

Recall that for compressible flow, we had an equation of state p = p(ρ, e). If p does not happen to
depend on the internal energy e, then neither neither the equation for conservation of mass nor the
equation for conservation of momentum will depend on e. This means it is possible to compute ρu

and ρ as a coupled system, then compute e offline if the energy is desired. We shall see later that
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in the case of incompressible flow, the pressure does not depend on the internal energy. We do,
however, need to retain ∇ · u = 0 as an equation that we must solve. We are left with the system

∇ · u = 0

ρt + u · ∇ρ = 0 (1)

ut + u · ∇u +
∇p

ρ
= 0 (2)

(3)

Body forces, e.g. gravity, are added to the RHS of the momentum equation, so that it becomes

ut + u · ∇u +
∇p

ρ
= g

where g =





0
−g

0



.

In the case of incompressible flow, it is often the case that the density of the initial configuration
may be assumed constant, such as is often the case for air or water. If this is the case, then ∇ρ = 0,
so that ρt +u · ∇ρ = 0 reduces to ρt = 0 and implies that the density remains constant throughout
the simulation. In this way, the density equation may often also be ignored.

1.1.5 Equation of State

Consider the case where the initial density ρ and internal energy e are spatially constant in the
initial conditions. Then, ∇ρ = 0 and ∇e = 0, so that the laws for conservation of mass and energy
imply ρt = 0 and et = 0. Thus, both density and internal energy are constant in space and time.
Since p = p(ρ, e) depends only on the density and internal energy, it too must be constant in
space and time. The only occurance of the pressure is in the equation for conservation of mass,
ut + u · ∇u + ∇p

ρ
= 0, which only depends on ∇p = 0. This leaves us to solve ut + u · ∇u =

0. Unfortunately, solving this will generally not lead us to satisfy ∇ · u = 0, so we are stuck.
Incompressible flow does not have an equation of state in the way compressible flow did.

The problem is that ∇ · u = 0 has a global influence that travels through the domain instantly.
While the system for compressible flow was hyperbolic, the system for incompressible flow is instead
elliptic. Rather than information traveling through the domain at finite speeds, we instead find
that information travels through the domain with infinite speed. The solution to the problem lies
in the two remaining equations, the divergence free condition and conservation of momentum. If
we take the divergence of the conservation of mass equation we get

0 = ∇ · (ut + u · ∇u +
∇p

ρ
)

= (∇ · u)t + ∇ · (u · ∇u) + ∇ ·

(

∇p

ρ

)

= ∇ · (u · ∇u) + ∇ ·

(

∇p

ρ

)

∇ ·

(

∇p

ρ

)

= −∇ · (u · ∇u)
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This is an equation similar to the Poisson equation, which we may solve for the pressure p. This
equation replaces the equation of state for computing the pressure and ensures that we maintain
the constraint ∇ · u = 0. As suggested earlier, this does not depend on the internal energy e, so
the internal energy may be ignored if it is not otherwise needed. If it is the case that ρ is spatially
constant, it may be pulled from inside the divergence operator and moved to the other side of the
equation to yield the Poisson equation

∆p = −ρ∇ · (u · ∇u).
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