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Lecture 14

1 Shallow Water Equations

Supplementary Reading: Osher and Fedkiw, §14.5.2

The shallow water equations are given by
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where h is the height of the water, and u is the velocity. The first equation is the equation for
conservation of mass, and the second is the equation for conservation of momentum. The shallow
water equations assume a constant density. In these equations, h is similar to the notion of mass,
as can be seen by multiplying by the width of a column of water and the density column. The term
hu on the right hand side is the advective term (conserved quantity times velocity). The hu term
on the left hand side can be interpreted as momentum, with hu2 the corresponding advective term.
The final term in the momentum equation is 1

2gh2, which accounts for the extra force (change in
momentum) due to gravity acting on columns of differing height.

In order to discretize the system using the procedure we described above, we must first find
the Jacobian and its eigensystem analytically. In computing the Jacobian, it is very important
to remember that we take the conserved variables (in this case h and hu) to be the independent
variables. To make this fact more apparent, we can rewrite the equations as
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and then define h = u1, u = u2u
−1
1 . Below we compute the Jacobian matrix.
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Note: if you find the treatment of h and hu as independent variables in the above computation
confusing, you may prefer rewrite the system as in (1), compute the Jacobian in terms of u1 and
u2, and then substitute for h and u at the end. Note that the Jacobian may also be obtained by
simply expanding the spatial derivatives:
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Next we find the eigensystem for the Jacobian. We have
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The eigenvalues of our system tell us how how fast things are moving around. The u part may be
thought of as the bulk velocity, and

√
gh is the sound speed. Next we find the right eigenvectors.
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Therefore, we have
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Using L we may project into the characteristic fields, upwind in the characteristic variables, and
get back using R.
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This approach has problems when h = 0. When this is the case, the Jacobian can be expressed
in Jordan form as
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It is clear form this that J is defective, and thus the system is only weakly hyperbolic. The eigenvec-
tors have coalesced. We cannot do upwinding, since we are do not have a full set of eigenvectors.
There are other options, though, such as the complimentary projection method.

2 Compressible Flow

The inviscid Euler equations for one phase compressible flow in the absence of chemical reactions
in one spatial dimension are

φt + f(φ)x = 0

which can be written in detail as
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where ρ is the density, u are the velocities, E is the total energy per unit volume, and p is the
pressure. The total energy is the sum of the internal energy and the kinetic energy,

E = ρe + ρ(u2)/2

where e is the internal energy per unit mass. The ρu, ρu2, and Eu terms on the right are the usual
advective terms. The two pressure terms apply forces to the system. This system still depends on
the pressure, for which we do not yet have an equation. This is where an equation of state (EOS)
is important.

2.1 Ideal Gas Equation of State

For an ideal gas
p = ρRT,

where R = Ru/M is the specific gas constant with Ru ≈ 8.31451J/(molK) is the universal gas
constant and M the molecular weight of the gas. Also valid for an ideal gas is

cp − cv = R,

where cp is the specific heat at constant pressure and cv is the specific heat at constant volume.
Since R is known, only one of cp and cv needs to be measured. Gamma is the ratio of specific heats,

γ = cp/cv.

For an ideal gas, one can write
de = cv dT,
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and assuming that cv does not depend on temperature (calorically perfect gas), integration yields

e = eo + cvT

where eo is not uniquely determined, and one could choose any value for e at 0K. We take e0 = 0
arbitrarily for simplicity.

Note that

p = ρRT =
R

cv
ρe =

cp − cv

cv
ρe = ρ(γ − 1)e = (γ − 1)ρe,

so our equation of state is
p = (γ − 1)ρe,

or
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Noting that ρu2 = (ρu)2ρ−1, we can compute the partials of the pressure as
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2.2 Sound Speed

At this point we have sufficient information to compute the Jacobian, which is left as an exercise.
We do, however, give its eigenvalues here
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ρ2
pe + pρ.

We may then define the sound speed as
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In the case of an ideal gas, this becomes
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so that the sound speed is

c =

√

γp

ρ
.

The eigenvalues are now λ1 = u, λ2 = u + c, and λ3 = u − c.
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