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Lecture 12

1 Discrete Conservation Form

1.1 ENO-Roe Discretization

The ENO-Roe discretization uses the weak form of a hyperbolic conservation law. This distinguishes
it from the Hamilton Jacobi ENO discretization described earlier, which was based on the strong
form. This makes ENO-Roe suitable for simulating nonlinear phenomena such as shocks, where the
solutions are discontinuous. The ENO-Roe discretization is based on the discrete conservation form
and is computed by using a divided difference table to compute the numerical fluxes as described
earlier. We present here a more detailed description of the computation of these flux functions in
1D.

For a specific cell wall, located at xi0+1/2, we find the associated numerical flux function Fi0+1/2

as follows. First, we define a characteristic speed

λi0+1/2 = f ′(φi0+1/2).

1.1.1 Burgers’ Equation

For example, recall Burgers’ equation,

ut +

(

u2

2

)

x

= 0.

The flux is given by

f(u) =
u2

2
f ′(u) = fu(u) = u.

Therefore,
λ(x) = f ′(u(x)) = u(x).

The value of u at the half grid points is defined using a standard linear average

ui0+1/2 = (ui0 + ui0+1)/2.

1.1.2 Interpolation and Computing Numerical Flux

If λi0+1/2 > 0, set k = i0. Otherwise, set k = i0 + 1. Next, define

Q1(x) = (D1
kH)(x − xi0+1/2).
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If |D2

k−1/2
H| ≤ |D2

k+1/2
H|, then c = D2

k−1/2
H and k⋆ = k − 1. Otherwise, c = D2

k+1/2
H and

k⋆ = k. Define
Q2(x) = c(x − xk−1/2)(x − xk+1/2).

If |D3
k⋆H| ≤ |D3

k⋆+1
H|, then c⋆ = D3

k⋆H. Otherwise, c⋆ = D3
k⋆+1

H. Define

Q3(x) = c⋆(x − xk⋆−1/2)(x − xk⋆+1/2)(x − xk⋆+3/2).

Then
Fi0+1/2 = H ′(xi0+1/2) = Q′

1(xi0+1/2) + Q′

2(xi0+1/2) + Q′

3(xi0+1/2)

which simplifies to

Fi0+1/2 = D1
kH + c(2(i0 − k) + 1)∆x + c⋆(3(i0 − k⋆)2 − 1)∆x2.

1.2 ENO-RF Discretization (ENO-Roe with the Entropy Fix)

The ENO-Roe discretization can admit entropy violating expansion shocks near sonic points. That
is, at a place where a characteristic velocity changes sign (a sonic point) it is possible to have a
stationary expansion shock solution with a discontinuous jump in value. If this jump were smoothed
out even slightly, it would break up into an expansion fan (i.e. rarefaction) and dissipate, which is
the desired physical solution. For a specific cell wall, xi0+1/2, if there are no nearby sonic points, then
we use the ENO-Roe discretization. Otherwise, we add high order dissipation to our calculation
of Fi0+1/2 to break up any entropy violating expansion shocks. We call this entropy fixed version
of the ENO-Roe discretization ENO-Roe Fix (ENO-RF). More specifically, we use λi0 = f ′(φi0)
and λi0+1 = f ′(φi0+1) to decide if there are sonic points in the vicinity. If λi0 and λi0+1 agree in
sign, we use the ENO-Roe discretization where λi0+1/2 is taken to be the same sign as λi0 and
λi0+1. Otherwise we use the ENO-local Lax Friedrichs (ENO-LLF) entropy fix discretization given
below. ENO-LLF is applied at both expansions where λi0 < 0 and λi0+1 > 0 and at shocks where
λi0 > 0 and λi0+1 < 0. While this adds extra numerical dissipation at shocks, it is not harmful
as shocks are self-sharpening. In fact, this extra dissipation provides some viscous regularization
which is especially desirable in multiple spatial dimensions. For this reason, authors sometimes
use the ENO-LLF method everywhere as opposed to mixing in ENO-Roe discretizations where the
upwind direction is well determined by the eigenvalues λ.

1.3 ENO-LLF Discretization

The ENO-LLF discretization is formulated as follows. Consider two primitive functions H+ and
H−. We compute a divided difference table for each of them with their first divided differences
being

D1
i H

± = f(φi) ± αi0+1/2φi αi0+1/2 = max(|λi0 |, |λi0+1|)

is our dissipation coefficient, and controls the amount of dissipation added. Note that the dissi-
pation coefficient, αi0+1/2, is determined locally for each cell wall, hence the name ENO-local Lax
Friedrichs. (One could also construct a scheme where a global dissipation coefficient α is used, a
global Lax Friedrichs, but this generally adds too much dissipation).

The second and third divided differences, D2

i+1/2
H± and D3

i H
± are then defined in the standard

way, like those of H.
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For H+, set k = i0. Then, replacing H with H+ everywhere, define Q1(x), Q2(x), Q3(x), and
finally F

+

i0+1/2
using the ENO-Roe algorithm above. For H−, set k = i0 + 1. Then, replacing H

with H− everywhere, define Q1(x), Q2(x), Q3(x), and finally F
−

i0+1/2
again by using the ENO-Roe

algorithm above. Finally,

Fi0+1/2 =
F

+

i0+1/2
+ F

−

i0+1/2

2

is the new numerical flux function with added high order dissipation.
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