CME306 / CS205B Theory Homework 8

Euler equations
For incompressible flow the inviscid 1D Euler equations decouple to:
pt +upy =0
p
et +ue, =0

The 3D Euler equations are given by
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where p is the density, u = (u,v,w) are the velocities, E is the total energy per unit volume and p is the
pressure. The total energy is the sum of the internal energy and the kinetic energy.
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where e is the internal energy per unit mass. The assumption of incompressiblity gives
Vou=u, +vy, +w, =0, (2)
Show that in 3D the inviscid Euler equations with the assumption of incompressible flow decouple to:
pr+u-Vp=0
ug +u-Vu+ % =0
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The mass conservation equation takes the form:
0=p;+ V- (pu)
=p+pV-utu-Vp
Z\pt+u-Vp=0\-

The momentum equation along the z-axis can be condensed into
0= (pu)e + (pu?)z + (puv)y + (puw) + ps
= puy + upy + putla + u(pu)z + pruy + u(pv)y + pwus + u(pw): + po
= puy + putg + pouy + pwuz + pa + (pr + (pv)y + (pu)z + (pw)-)
= put + pu- Vu+pz + (pr + V- (pu))
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A similar argument reveals that the y- and z-axis momentum equations reduce to their appropriate equations,
giving (in vector form):

:>ut+(u-V)u+V7:0. (3)

Finally, The energy equation can be manipulated in the following way:
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Compressible Flow

Find the Jacobian and the right eigenvectors for Euler’s equations in 1-D, (hint: it is useful, in the calculation

of the eigenvectors, to consider the enthalpy H = ?, and the sound speed ¢ = %).
P pu
pul|l + | pu*+p | =0. (4)
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t

You should assume the ideal gas law as your equation of state,

p(p,e) = (v — 1)pe.

(5)

We begin by converting the flux term into our independent variables, 1 = p, o = pu and x3 = E. Then

we can write the Flux term as:
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which gives our Jacobian the form:
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We are given the eigenvalues in lecture as A = {u,u £ ¢}, where ¢ = ,/%. The first eigenvector then

simply becomes:
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In order to solve the other eigenvectors, it is useful to introduce the enthalpy term pH = E + p. Then
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Then we can manipulate the following to get our eigenvectors:

JU =\
=Uy = A\
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