CME306 / CS205B Homework 6

Essentially Non-Oscillatory Schemes

Given the following data for ¢™, write down the interpolating polynomial that third order HJ ENO would
construct in order to compute ¢?+1 in approximating the equation ¢, + ¢, = 0.

¢?—3 = 57¢?—2 = 5v¢?—1 = 47(15? = 57¢?+1 = 17¢?+2 = *2347?-5-3 =0

Recall that the interpolating polynomial for 3" order requires Q1,Q2,Q3; Qo will be calculated, but then
promptly discarded since (Qo), = 0. Next, we calculate the divided difference table, below:

i —3 i — 2 1—1 7 i+ 1 i+ 2 i1+ 3
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0 —1 1 —4 =3 2
1 Ax 1 Az _5 Az 1 Ax 5 Ax
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We are evaluating ¢, at i, so Qg = ¢; = 5. We required an upwind direction, which gives us @1, and
ENO gives @2 and Q3 as:

Q=5 ()
Q2 ﬁ(x—xi)(w—mifl)
1

Putting it all together, we get:

P3(z) =5+ Aix(x —z;) + ﬁ(z —x;)(x —x21) + ﬁ(x —x;)(x —xi-1)(x — xi—2) (1)

We'll go a few steps further now, to find out what ¢, (z;) approximately is. We evaluate P3(x;) to be:

Pl (2)= a5 + agz (@ — 20) + (2 — 2i1)] + gazs [(z — 20) (& — @i1) + (2 — 2im2)] + (& — 2im1) (& — 2i-2)]
P3(23)= %= + 5oz (@i — Tim1) + 558 (@0 — 2i-1) (T — Ti—2)
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If we happened to have chosen that Az = .5, then ¢, ~ 6.



Weighted ENO

If we consider an upwind discretization of ¢,, we have three possible third-order interpolating polynomials,
given by
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Where v; = D*¢;4 3, and D*¢ is the first-order upwind discretization of ¢,.
However, the philosophy of picking exactly one of the three candidate stencils is overkill in smooth regions
of ¢ where ¢ is well-behaved. Instead, we can take a convex sum of the three stencils,

Gp = w10}, + wWadhh + W) (2)
Where 0 < w; <1, wy + we + w3 = 1. It has been shown that we can pick wy = .1,ws = .6,w3 = .3 and
achieve a 5" order accurate approximation of ¢,.
1. Show that if we perturb w by O(Ax?) we still get a 5" order approximation to ¢,.
we know that each of ¢J. for j € {1,2,3} are third-order accurate schemes, so ¢ = ¢, + O(Az3). If
we take €; = O(Ax?) to be our perturbations to w;, then our WENO scheme for ¢, becomes:
Gr = D10}, + D20 + W)
= (w1 + @)y + (W2 + €2)97 + (w3 + €3)¢5
= w10, + w2t} + W3 + €19, + 2d7 + €30,
= ¢y + O(AZ%) + (61 + €2 + €3) s + €10(AZ?) + £0(A2?) + e30(Az®)
= ¢ + (€1 + €2 + €3)pp + O(A2®)

We note that €1 + €2 + €3 = 0 since we still want Zj wj =1, and this scheme is 5t order accurate.

2. Why is this a bad idea in non-smooth areas of the flow? In order to demonstrate this, consider
¢t + ¢, = 0 for a heaviside step function, with initial data given by:

¢?_3 = 07(23?—2 = 0’¢?_1 = 07¢? = 17¢?+1 = 17¢?+2 = 17¢?+3 =1

We’ve discussed in class that any scheme which adds over-shoots to a problem can lead to non-physical
oscillations near discontinuities. With that in mind, consider the WENQO approximation which is made
for ¢, at x;—1. The divided difference table takes the form:

i—4 i—3 i—2 i—1 i i+1 i+2 i+3
0 0 0 0 1 1 1 1
0 0 0 = 0 0 0

If we read off the table, we get:

_ 1
T Ax

Both ¢2 and ¢ give a non-zero approzimation to ¢, even though both the ENO approzimation as well
as the analytical solution gives ¢;—1 = 0 fort > 0. In HJ-WENQO there is no way to avoid pulling
in bad information near a discontinuity, which is why it is not a good method to use near non-smooth
regions of the flow.
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