
CS205B / CME306 Homework 3

Rotation Matrices

1. The ODE that describes rigid body evolution is given by R′ = ω?R.

(a) Write down the forward Euler update for this equation.

Rn+1 = Rn + ∆tω?Rn

(b) Show that the updated “rotation” matrix computed from this update is not orthogonal.

Rn+1(Rn+1)T = (Rn + ∆tω?Rn)(Rn + ∆tω?Rn)T

= Rn(Rn)T + ∆tω?Rn(Rn)T + ∆tRn(ω?Rn)T + ∆t2(ω?)TRn(Rn)Tω?

= I + ∆tω?Rn(Rn)T −∆tRn(Rn)Tω? −∆t2ω?ω?

= I −∆t2ω?ω?

Thus, Rn+1 is orthogonal if and only if ∆t = 0 or ω = 0.

(c) How might one “fix” this matrix that is almost a rotation to make it rotation?
There are several choices that could be made correct the matrix to be orthogonal. The one often
seen in practice is to observe the SVD of R = UΣV T , and take R̂ = UV T ie. discarding the
non-unity singular values.

2. Another update equation is Rn+1 = e∆t(ωn)?

Rn. Here, ω? is the cross product matrix, where ω?v =
ω × v. The exponential map eA can be defined for square matrices using the taylor series expansion

e∆tA = I + ∆tA+
∆t2

2
A2 +

∆t3

6
A3 + ...

(a) Show that this update equation is a first order approximation of the ODE R′ = w?R that it is
meant to solve.

Rn+1 = e∆t(ωn)?

Rn

= (I + ∆tω? +O(∆t2))Rn

= Rn + ∆tω?Rn +O(∆t2)

(b) Show that the result of this update is orthogonal.

(Rn+1)TRn+1 = (e∆t(ωn)?

Rn)T e∆t(ωn)?

Rn

= (Rn)T e−∆t(ωn)?

e∆t(ωn)?

Rn

= (Rn)T e0Rn

= (Rn)TRn = I
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(c) Find a closed form expression for this update rule.
We first begin by observing that ω? satisfies its own characteristic polynomial. This immediately
implies (ω?)3 = −|ω|ω?, which allows us to collapse the infinite sum from the exponential mapping
into something familiar.

Rn+1 = e∆t(ωn)?

Rn

=

( ∞∑
m=0

∆tm(ω?)m

m!

)
Rn

=

(
I +

∞∑
m=0

[
(−1)m∆t2m+1(|ω|)2m

(2m+ 1)!
ω? +

(−1)m∆t2m+2(|ω|)2m

(2m+ 2)!
(ω?)2

])
Rn

=
(
I +

sin(∆t|ω|)
|ω|

ω? +
1− cos(∆t|ω|)

|ω|2
(ω?)2

)
ω?Rn

=
(
I + sin(θ)u? + (1− cos(θ))(u?)2

)
Rn

Where θ = ∆tω? and u = ω
|ω| .

It should be noted here that this update is well-known, and is often referred to as the Rodrigues
rotation formula.

(d) Give an intuitive description of what this update rule is doing.

The angular velocity ω is the rate of rotation, and the direction of ω is the axis about which the
rotation is performed. θ then is how much the body should be rotated, and u the axis of rotation.
The exponential mapping gives us exactly the rotation matrix which does this.
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Modified Equations

Consider the advection equation
ut + aux = 0.

The numerical methods below satisfy modified equations to higher order than the advection equation itself.
See Leveque §8.6 and the discussion notes for more on modified equations.

Assume λ = ∆t
∆x = constant.

A. Explicit central differencing – Find a modified equation for which explicit central differencing gives an
O(∆t2) approximation. What modification to the explicit central differencing scheme does this suggest
to make it a stable numerical scheme for the advection equation?

Let Qn
i denote the numerical approximation. The explicit central differencing scheme is given by

Qn+1
j −Qn

j

4t
+ a

Qn
j+1 −Qn

j−1

24x
= 0 (1)

Assume we have a function, v(x, t) that satisfies (1) exactly. Then

v(x, t+4t)− v(x, t)
4t

+ a
v(x+4x, t)− v(x−4x, t)

24x
= 0 (2)

The Taylor series expansions of the terms in v about about (x, t) are

v(x, t+4t) = v(x, t) +4tvt(x, t) +
1
2
4t2vtt(x, t) +O(4t3)

v(x±4x, t) = v(x, t)±4xvx(x, t) +
1
2
4x2vxx(x, t) +O(4x3)

Substituting these expressions into (2) and rearranging gives

vt + avx +
1
2
4tvtt = O(4t2) (3)

We would like to approximate the vtt by a spatial derivative. From (2) we have

vt + avx = O(4t)

Differentiating with respect to x and then t we get

vtx + avxx = O(4t)
vtt + avxt = O(4t)

Multiplying the first equation by a and subtracting from the second, we get

vtt = a2vxx +O(4t) (4)

Substituting (4) into (3), we have

vt + avx = −4t
2
a2vxx +O(4t2)

Therefore the modified equation is

vt + avx = −4t
2
a2vxx (5)
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The modified equation has a dissipative term with a negative coefficient, and is therefore ill-posed. This
suggests that to stabilize the scheme, we should add enough numerical dissipation to make the coefficient
non-negative. If we add in the central difference approximation to 4t

2 a
2vxx, we get

Qn+1
j −Qn

j

4t
+ a

Qn
j+1 −Qn

j−1

24x
=
4t
2
a2
Qn

j+1 − 2Qn
j +Qn

j−1

4x2
(6)

which is the Lax-Wendroff scheme. Alternatively, we can observe that as long as the CFL condition∣∣∣4t
4xa

∣∣∣ ≤ 1 holds, 4t
2 a

2 ≤ 4t
2
4x2

4t2 , so another possible scheme is

Qn+1
j −Qn

j

4t
+ a

Qn
j+1 −Qn

j−1

24x
=
4t
2
4x2

4t2
Qn

j+1 − 2Qn
j +Qn

j−1

4x2

Rearranging this expression gives

Qn+1
j − 1

2 (Qn
j+1 +Qn

j−1)
4t

+ a
Qn

j+1 −Qn
j−1

24x
= 0

which is the Lax-Friedrichs scheme.

B. Find a modified equation for which your proposed method gives an O(∆t3) approximation.

The Lax-Wendroff scheme is given in (6) above. Assume we have a function, v(x, t) that satisfies
(6) exactly. Then

v(x, t+4t)− v(x, t)
4t

+ a
v(x+4x, t)− v(x−4x, t)

24x
=
4t
2
a2 v(x+4x, t)− 2v(x, t) + v(x−4x, t)

4x2

(7)
Expanding the terms in v in Taylor series about (x, t) and rearranging gives

vt + avx +
1
2
4tvtt −

1
2
4ta2vxx +

1
6
4t2vttt +

1
6
a4x2vxxx = O(4t3) (8)

Again, we would like to approximate the terms vtt and vttt in terms of the spatial derivatives of v.
From (8) we have that

vt = −avx +O(4t) (9)

By differentiating this expression twice with respect to t and applying it to replace temporal derivatives
with spatial derivatives in the RHS, we get

vttt = −a3vxxx +O(4t) (10)

Now we wish to approximate the vtt term with a spatial derivative term. From (8) we have that

vt + avx +
1
2
4t(vtt − a2vxx) = O(4t2) (11)

From (9),

vtt = a2vxx +O(4t) (12)

Combining this with (11) gives

vt + avx = O(4t2) (13)

⇒vtt = a2vxx +O(4t2) (14)

4



Substituting (10) and (14) into (8), we get

vt + avx −
1
6
a34t2vxxx +

1
6
a4x2vxxx = O(4t3) (15)

Therefore, the modified equation is

vt + avx =
1
6
a34t2vxxx −

1
6
a4x2vxxx

or

vt + avx = −1
6
a4x2(1− a2 4t2

4x2
)vxxx
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