
CME306 / CS205B Homework 2

Arbitrary Lagrangian-Eulerian (ALE) Methods

Recall from homework that we derived the weak form of conservation of mass (in Eulerian form) to be:

∂

∂t

∫
Ω

ρdV +
∫

∂Ω

(ρ~u) · ~dA = 0 (1)

Where Ω, a control volume, remains fixed in time. In Lagrangian methods, we instead move Ω and ignore
the flux across the boundary. ALE methods make no such assumption, and instead we take the change in
time of the boundary to be ∂Ω

∂t = ~v 6= ~u.

1. Please re-derive the weak form of conservation of mass, this time in ALE form (that is, the control
volume Ω is moving at some speed ~v, which is not the fluid velocity ~u). Remember that conservation of
mass describes the change in mass of a control volume, so ∂

∂t should not be under the volume integral.

ρt +∇ · (ρu) = 0∫
Ω

ρtdV +
∫

Ω

∇ · (ρ~u)dV = 0 integrating over Ω∫
Ω

ρtdV +
∫

∂Ω

(ρ~u) · ~dA = 0 applying Green’s Theorem

∂

∂t

∫
Ω

ρdV −
∫

∂Ω

(ρ~v) · ~dA+
∫

∂Ω

(ρ~u) · ~dA = 0 reordering the differential

∂

∂t

∫
Ω

ρdV +
∫

∂Ω

ρ (~u− ~v) · ~dA = 0 lumping similar terms

2. Write down the strong form of conservation of mass, in ALE form.

Note that at a point, ~v is the velocity of the particle, and ~u the velocity of the fluid about the particle.
We note that the material derivative becomes D

Dt = ∂
∂t + ~v · ∇ and we get:

Dρ

Dt
+ ρ∇ · (~u− ~v) + ~u · ∇ρ = 0 (2)

It is extremely important to note that this is still the same conservation law as given in either Eulerian
or Lagrangian frameworks. With a simple rearrangement of terms we can recover ρt +∇ · (ρ~u) = 0.
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Runge-Kutta methods

Recall the model ordinary differential equation, y′ = λy, can be discretized and solved in a variety of ways.
A popular family of methods are referred to as RK, or Runge-Kutta methods (you may recall that the first
order RK method is equivalent to forward-differencing, yi+1 = yi +∆xλyi). These methods can be expressed
generally as yi+1 = Gyi, and are stable when |G| ≤ 1 – this gives a condition on ∆xλ for stability.

1. TVD—Define the ‘total variation’ of v as

TV (v) =
n∑

j=1

|vj+1 − vj | (3)

And prove that 2nd order Runge-Kutta is total variation diminishing (TVD) in the sense that TV (vn+1) ≤
TV (vn). You should assume that forward Euler is TVD. Recall that 2nd order Runge-Kutta is given
to be: 

v∗ = (1 + ∆tλ) vn

v∗∗ = (1 + ∆tλ) v∗

vn+1 = vn+v∗∗

2

(4)

By our assumption that the forward Euler step is TVD, which gives:

TV (v∗∗) ≤ TV (v∗) ≤ TV (vn)

Therefore,

TV (vn+1) =
N∑

j=1

∣∣vn+1
j+1 − v

n+1
j

∣∣
=

N∑
j=1

∣∣∣∣vn
j+1 + v∗∗j+1

2
−
vn

j + v∗∗j
2

∣∣∣∣
=

N∑
j=1

∣∣∣∣vn
j+1 − vn

j

2
+
v∗∗j+1 − v∗∗j

2

∣∣∣∣
≤

N∑
j=1

∣∣∣∣vn
j+1 − vn

j

2

∣∣∣∣+
∣∣∣∣v∗∗j+1 − v∗∗j

2

∣∣∣∣
=

1
2

[TV (vn) + TV (v∗∗)]

≤ 1
2

[TV (vn) + TV (vn)]

= TV (vn)

2. Note that λ in general can be complex, and find the stability condition for 2nd order Runge-Kutta.

Expanding out 2nd order RK gives the following relationship between vn and vn+1:

vn+1 =
1
2

[1 + (1 + ∆tλ)(1 + ∆tλ)] vn (5)

which gives us that we need
∣∣∣1 + ∆tλ+ ∆t2

2 λ2
∣∣∣ ≤ 1. Separating into real and imaginary parts and

lumping together ∆t and λ (∆tλ = λR + ıλI), we get:[
1 + λR +

1
2
(
λ2

R − λ2
I

)]2

+ [λI + λRλI ]2 ≤ 1
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Lax-Richtmyer Theorem

Prove that stability and consistency are sufficient for convergence for a linear scheme.
We apply the following notation:

qn is the exact solution to the analytic problem at time tn

Qn is the numerical solution computed at time tn

En = Qn − qn and is the total error at time tn

N is the numerical method, so Qn+1 = N (Qn)
τn+1 = qn+1 −N (qn) and is the local truncation error of the numerical scheme

And we note that we are given the following:
linearity N (a+ b) = N (a) +N (b)
stability ∃CT : ‖Nn‖ ≤ CT ,∀n ≤ N where T = N∆t
consistency τ → 0 as ∆t→ 0

We derive a recurrence relation for the error:

En+1 = Qn+1 − qn+1

= N (Qn)− qn+1

= N (En + qn)− qn+1

= N (En + qn)−N (qn) +N (qn)− qn+1

= N (En + qn)−N (qn) + ∆t τn

= N (En) + ∆t τn

As noted in the discussion notes, we want to show that ‖EN‖ → 0 as ∆t→ 0 and T → N∆t. Using the
linearity of N and stability, we can derive the following inequality:

‖EN‖ = ‖NNE0 + ∆t
N∑

j=1

NN−jτ j−1‖

≤ ‖NN‖‖E0‖+ ∆t
N∑

j=1

‖NN−j‖‖τ j−1‖

≤ CT (‖E0‖+ ∆t
N∑

j=1

‖τ j−1‖)

≤ CT (‖E0‖+ T max
j
‖τ j‖)

Here we note that consistency gives us that ‖τ‖j → 0,∀j. If we assume that our initial data is correct,
‖E0‖ → 0, and we have that ‖EN‖ → 0, completing the proof.

3


