CME306 / CS205B Homework 2

Arbitrary Lagrangian-Eulerian (ALE) Methods

Recall from homework that we derived the weak form of conservation of mass (in Eulerian form) to be:

Q/pdv+/ (pit) - dA =0 (1)
ot Jq a0

Where €2, a control volume, remains fixed in time. In Lagrangian methods, we instead move (2 and ignore
the flux across the boundary. ALE methods make no such assumption, and instead we take the change in
time of the boundary to be %—? =J # 1.
1. Please re-derive the weak form of conservation of mass, this time in ALE form (that is, the control
volume {2 is moving at some speed ¥, which is not the fluid velocity @). Remember that conservation of

mass describes the change in mass of a control volume, so % should not be under the volume integral.

pe+ V- (pu) =0

/ pedV + / V- (pu)dV =0 integrating over {2
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/ pedV + / (pii) - dA =0 applying Green’s Theorem
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lumping similar terms

9/pdv+/ p(i—7)-dA=0
ot Jo a0

2. Write down the strong form of conservation of mass, in ALE form.

Note that at a point, U is the velocity of the particle, and © the velocity of the fluid about the particle.

We note that the material derivative becomes DQt = % +U-V and we get:

PV (@-T)+ T Vp= (2)

It is extremely important to note that this is still the same conservation law as given in either Eulerian
or Lagrangian frameworks. With a simple rearrangement of terms we can recover p; + V - (pi) = 0.



Runge-Kutta methods

Recall the model ordinary differential equation, 3’ = Ay, can be discretized and solved in a variety of ways.
A popular family of methods are referred to as RK, or Runge-Kutta methods (you may recall that the first
order RK method is equivalent to forward-differencing, y;+1 = y; + AzAy;). These methods can be expressed
generally as y;11 = Gy;, and are stable when |G| < 1 — this gives a condition on Az for stability.

1. TVD—Define the ‘total variation’ of v as
TV(v) =Y |vj1 — vl (3)
j=1

And prove that 2"? order Runge-Kutta is total variation diminishing (TVD) in the sense that TV (v"*1) <
TV (v™). You should assume that forward Euler is TVD. Recall that 2"@ order Runge-Kutta is given

to be:
v* = (1+ AtA) "
v = (14 At\)v* (4)
Un+1 — v"-;v**

By our assumption that the forward Euler step is TVD, which gives:
TV (™) <TV(v*) <TV(v")

Therefore,
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2. Note that ) in general can be complex, and find the stability condition for 2"¢ order Runge-Kutta.

Expanding out 2" order RK gives the following relationship between v™ and v™+1:

"t

L % L+ (1+ AL+ AL o" (5)

which gives us that we need ‘1 + At + AT'SQ)\Q‘ < 1. Separating into real and imaginary parts and
lumping together At and A (AtA = Ag + 1)1 ), we get:
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Lax-Richtmyer Theorem

Prove that stability and consistency are sufficient for convergence for a linear scheme.
We apply the following notation:

n

q is the exact solution to the analytic problem at time ¢"

Q" is the numerical solution computed at time t"

E" = Q" — ¢" and is the total error at time t"

N is the numerical method, so Q" = N (Q™)

il =gt — N(¢") and is the local truncation error of the numerical scheme

And we note that we are given the following:

linearity N(a+0b)=N(a)+N(b)
stability ICT : IN|| < CT,¥n < N where T = NAt
consistency 7 — 0 as At — 0

We derive a recurrence relation for the error:

En+1 _ Qn+1 _ qn+1
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As noted in the discussion notes, we want to show that |EN|| — 0 as At — 0 and T — NAt. Using the
linearity of N and stability, we can derive the following inequality:
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Here we note that consistency gives us that ||7]|7 — 0,V4. If we assume that our initial data is correct,
|E°|| — 0, and we have that |[E™N|| — 0, completing the proof.



