Model Equations

In general, when we develop a numerical scheme to approximate a PDE, we
anticipate that our scheme will not allow us to solve the PDE exactly: rather,
it will produce a solution that contains some error. In particular, the local
truncation error of a given method is merely a measure of how well the true
solution of the difference equation satisfies our numerical method. An interesting
question to ask, then, is the following:

Is there a PDE to which our numerical approximation Q7 is actually
the exact solution?

This question may be difficult to answer, but we should believe that the following
is somewhat easier:

Can we at least find an equation that is better satisfied by @7 than
the original PDE we were attempting to solve?

If we can find such an equation, we can often learn a great deal about the
numerical method used to generate it, since it is usually much easier to study
the solutions of PDEs than those of finite difference formulas.

In fact, using a Taylor series expansion, we can find a PDE which satisfies
the difference equation exactly, but it will have infinitely many terms. The idea
is to truncate this series at some point, yielding a PDE that is simple enough to
study while simultaneously giving a good indication of the behavior of Q)}'. One
interesting fact is that, if the method is accurate to order s, the new equation
(which we call the model equation) is generally a modification of the original
PDE with new terms of order s.

Example Consider the the first order upwind method for the one dimensional
advection equation ¢; + u¢, = 0 in the case u > 0.
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We can insert a function v(z,t) into the numerical method (much in the same
way we insert the true solution ¢(x,t) when determining the local truncation
error) in order to find a differential equation that is satisied by v. Note that
v is a function that agrees with QF exactly at the grid points, and thus v(z,?)
satisfies (1) exactly:

v(z,t + At) = v(x,t) — u% [v(x,t) —v(x — Ax,t)].

Now, if we Taylor expand about (z,t) and simplify, we get
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This can be rewritten as
1 1
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This resulting equation is precisely the PDE that v satisfies. If we assume
At/Ax is fixed, then the terms on the right hand side are O(At), O(At?), etc.,
so for small At we can truncate the series to obtain a PDE that is well satisfied
by the Q7. In particular, if we drop all the terms on the right, we recover the
original advection equation. Since this is equivalent to dropping terms of O(At),
we expect that QF satisfies this equation to O(At), which we know to be correct
since this upwind method is first order accurate.

If, instead, we keep the O(At) terms, we get:

1
Vp + UV, = 3 (WAL vgy — At vyy) . (2)
This involves second derivatives in both = and ¢, but we can derive a slightly

different model equation with the same accuracy by differentiating (2) with
respect to t to obtain

1
Ut = —UUgt + 3 (UAZ Vg — AL Vi)
and with respect to z to obtain
1
Vg = —UVzq + 3 (WAL Vpgy — A Vg -
Combining these equations (by reording the partials) gives us
Vi = U2 Vpp + O(Ad).
Combining this equation with (2) gives
1 2 2
vy +uvy = i(uAac Vg — U AL v) + O(AL).
Since we have already dropped O(At?) terms, we may do so here to obtain
1
Vp + UV, = iqu(l — V) Usy
where v = uAt/Ax is the Courant number.

We have now transformed our model equation into a more familiar advection-
diffusion equation, and the grid function @} can be viewed as giving a second
order accurate approximation to the true solution of this equation. The fact that
the model equation for the upwind method is an advection-diffusion equation
explains a great deal about how the numerical solution behaves. Solutions to

the advection-diffusion equation translate at the proper speed w, but become
smeared out over time.



If we examine the diffusion coeflicient in our equation, we note that it van-
ishes in the special case uAt = Az. In this case, the exact solution to the
advection equation is recovered by the upwind method. Also, we note that the
diffusion coefficient is positive only if 0 < uA¢/Ax < 1. This is precisely the
stability limit of the upwind method! If it is violated, the diffusion coefficient
in the model equation is negative, giving an ill-posed backward heat equation.

Dissipation v. Dispersion

As we have already seen, dissipation is essentially a kind of energy loss. Adding
dissipation to the advection equation essentially says that the change in ¢ over
time results mostly from the bulk motion of the fluid flow, but not entirely.
Dissipation has the net effect of making a wave form decay over time (things get
smeared out) and can thus be useful in damping spurious oscillations. Formally
we say that a one-step scheme has dissipation of order 2r if there exists a
positive constant ¢ independent of At and Az, such that

lg(Azé)| <1 — ¢(sin %Axf)%.

If dissipation causes a wave to decay over time, dispersion is a phenomena that
leads to the gradual separation of a waveform into a trail of oscilations. We
recall (via a few judicious applications of the Fourier inversion formula) that we
can write the solution of the one-way wave equation as
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u(t,2) = o= / T emiwat g (1) dw.

From this, we can conclude that the Fourier transform of the solution satisfies
a(t 4+ At,w) = e~ @8t w).

Recall too that, when we consider a one-step finite difference scheme, we have
seen that
0" = g(Ax€)d™.

By comparing these two equations, we see that we can expect that g(Azg) will
be a good approximation to e~**%A% In particular, we can write:

g(Ax€) = [g(Axe)|e~ it AsOAL

The quantity a(Azf) is called the phase speed and is the speed at which waves
of frequency ¢ are propogated by the finite difference scheme. If a(Ax) were
equal to a for all &, then waves would propogate with the correct speed. How-
ever, in practice, this is almost never the case. This is the precise definition of
dispersion: the finite different scheme propogates waves of different frequencies
with different speeds. To precisely quantify the error generated by dispersion,
it is oftentimes useful to examine the phase error of a finite difference scheme,
which is given by a — a(Ax€).



Kinematic Description of Rigid Body Orientation

If we simulate a rigid body in space, we need only track it’s position x and its
orientation R. R describes the current rotation of the rigid body, relative to
some initial (or rest) state. In 2-D, the orientation of a rigid body is completely

described by an angle 6, and
cosf —sinf
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In 3-D, the orientation of a rigid body is described by the 3-vector 6 whose
elements describe the rotation in the x-, y- and z-axis respectively, and R is
a 3 x 3 matrix. Note, for example, that R is a rotation matrix and therefore
orthogonal, so R’R = RR” = § (where 0 here represents the identity matrix
— T is used to notate the inertia tensor). Indeed,
(RRT) =0’
R'R" + RR" =0
= RR"+ RR"T =0

so R'R7 is a skew-symmetric matrix. In fact,
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Where w* is a matrix with the property that w*« = w x @ for any vector 4. The
physical intuition behind w is that it describes the rotation about the axis w/||w||
at an angular velocity ||w|| (in radians). From this derivation we can see (since
R is orthogonal) that we have an ODE that describes how the orientation is
evolved forward in time (assuming that w is known — this would typically come
from an “F = ma”-type formulation):

R’ = w'R. (5)



