CME 192: Introduction to MATLAB Lecture 6

Stanford University

January 29, 2019

Outline

Review
Ordinary Differential EquationsSolving Equations
Function Approximation
Review $2 / 17$

Review

Lecture 5

- Timing
- Optimization
- Preallocation
- Vectorization
- Using in-built functions
- Memory layout
- Error Handling

Outline

Review

Ordinary Differential Equations

Solving Equations

Function Approximation

Ordinary Differential Equations

Ordinary Differential Equations

Ordinary

- one independent variable (usually time, t)
- cannot be time and length (heat flow problem)

Differential

- $x^{\prime}, \dot{x}, \frac{d x}{d t}$
- $x^{\prime \prime}, \ddot{x}, \frac{d^{2} x}{d t^{2}}$
- $x^{\prime \prime \prime}, \dddot{x}, \frac{d^{3} x}{d t^{3}}$

Equations

- $\dot{x}=f(t, x)$
- e.g. $\dot{x}=-x^{2}+t$;
- multiple equations are OK

Dynamics Equations

Dynamics Equations are Ordinary Differential Equations

$$
\begin{gathered}
m a=F \\
v=\dot{x} \\
a=\dot{v}=\ddot{x}
\end{gathered}
$$

so

$$
\ddot{x}=\frac{F}{m}=\frac{1}{m} F(t, x)
$$

is an Ordinary Differential Equation

$$
\ddot{x}=f(t, x)
$$

Solving Ordinary Differential Equations

- choose starting point (initial conditions)
- advance in time, for example:

$$
\begin{gathered}
x(0)=x_{0} \\
x(t+\Delta t)=x(t)+\Delta t \cdot f(t, x(t))
\end{gathered}
$$

- repeat till desired time is reached
- more accurate methods exist

First Order Ordinary Differential Equations

$$
\begin{array}{ll}
\dot{x}=x^{2}+t \quad & {\left[\dot{x}_{1}\right]=\left[x_{1}^{2}+t\right]} \\
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{1}^{2}+t
\end{array}\right]}
\end{array}
$$

$\ddot{x}=x^{2}+t$
$\Longrightarrow \quad$ Notice that

$$
\frac{d}{d t} x_{2}=\dot{x}_{2}=\frac{d}{d t} \dot{x}_{1}=\ddot{x}_{1}
$$

$$
\dddot{x}=\dot{x}-x^{2}+t
$$

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
x_{3} \\
x_{4} \\
x_{2}-x_{1}^{2}+t
\end{array}\right]
$$

Solving First Order Ordinary Differential Equations

Procedure

1. write the function $f(t, x)$
2. choose time span on which to solve
(just start and end points are OK)
3. choose initial conditions (of x)
4. run a differential equation solver
```
% 1. write the function
```

% 1. write the function
f = @(t, x) - x^2 + t;
f = @(t, x) - x^2 + t;
time span
time span
% (doesn t affect accurracy)
% (doesn t affect accurracy)
tspan = linspace (0, 10, 1e3);
tspan = linspace (0, 10, 1e3);
% 3. initial conditions
% 3. initial conditions
x0 = 0;
x0 = 0;
% 4. run solver
% 4. run solver
[T, X] = ode45(f, tspan, x0);

```
[T, X] = ode45(f, tspan, x0);
```


Outline

Review

 Ordinary Differential Equations

 Ordinary Differential Equations}

Solving Equations

Function Approximation

Finding a zero of a function

- Zeros of a polynomial
- <roots> $=$ roots(<poly_coeff>), e.g. r $=\operatorname{roots}([2,3,1])$
- always works, gives complex roots too
- Zeros of a univariate $f(x)=0$ function
- <x_zero> = fzero(<fn>, <x_guess>)
- doesn't always work, function has to change sign at zero
- solves: $x^{2}-2=5 x+2 \Longrightarrow f(x)=x^{2}-2-5 x-2=0$
- System of equations $\left[\begin{array}{l}f_{1}(x, y, z) \\ f_{2}(x, y, z) \\ f_{3}(x, y, z)\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
- <x_zero> = fsolve(<Fn>, <x_guess>)
- takes a function $\mathrm{Fn}=@(\mathrm{X})$ where Fn is a vector of functions and X is a vector of variables
- doesn't always work, function has to change sign at zero

Solving Systems of Linear Equations

$$
\left\{\begin{array}{l}
3 x+5 y+z=0 \\
7 x-2 y+4 z=2 \\
-6 x+3 y+2 z=-1
\end{array} \quad \Longrightarrow \quad\left[\begin{array}{ccc}
3 & 5 & 1 \\
7 & -2 & 4 \\
-6 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right]\right.
$$

$$
\left[\begin{array}{ccc}
3 & 5 & 1 \\
7 & -2 & 4 \\
-6 & 3 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right] \quad \Longrightarrow \quad \begin{gathered}
A x=b \\
x=A^{-1} b
\end{gathered}
$$

$$
\begin{aligned}
& x=A^{-1} b
\end{aligned}
$$

Solving Systems of Linear Equations

$$
A x=b
$$

Matrix Inverse

```
x = inv(A) * b
```

- unique solution must exist (gives garbage otherwise)
- same number of equations and unknowns

Matrix Pseudoinverse

```
x = pinv(A) * b
```

- if matrix is invertible, same answer as inv
- if matrix is not invertible
- if too many equations: smallest total error
- if too few equations: smallest vector that satisfies equations

Backslash
1
$\mathrm{x}=\mathrm{A} \backslash \mathrm{b}$

- very advanced, chooses best algorithm

Outline

> Review

> Ordinary Differential Equations

> Solving Equations

Function Approximation

Function Approximation

Finding a line between points

$$
f(x)=m x+b
$$

Between two points

$$
\left\{\begin{array}{l}
m x_{1}+b=y_{1} \\
m x_{2}+b=y_{2}
\end{array}\right.
$$

solving for m and b. In matrix form

$$
\left[\begin{array}{ll}
1 & x_{1} \\
1 & x_{2}
\end{array}\right]\left[\begin{array}{c}
b \\
m
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

Between more points

$$
\left[\begin{array}{ll}
1 & x_{1} \\
1 & x_{2} \\
1 & x_{3} \\
1 & x_{4}
\end{array}\right]\left[\begin{array}{c}
b \\
m
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]
$$

Best fit

$$
\left[\begin{array}{ll}
1 & x_{1} \\
1 & x_{2} \\
1 & x_{3} \\
1 & x_{4}
\end{array}\right]\left[\begin{array}{c}
b \\
m
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]
$$

has no unique solution. Try to find such m and b that error is smallest

$$
\left\|\left[\begin{array}{ll}
1 & x_{1} \\
1 & x_{2} \\
1 & x_{3} \\
1 & x_{4}
\end{array}\right]\left[\begin{array}{c}
b \\
m
\end{array}\right]-\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]\right\|=\text { error }=\|A \theta-y\|
$$

```
th = A \ y
```


Quadratic fit

$$
\begin{gathered}
f(x)=a x^{2}+b+c \\
{\left[\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
1 & x_{3} & x_{3}^{2} \\
1 & x_{4} & x_{4}^{2} \\
1 & x_{5} & x_{5}^{2} \\
1 & x_{6} & x_{6}^{2} \\
1 & x_{7} & x_{7}^{2} \\
1 & x_{8} & x_{8}^{2} \\
1 & x_{9} & x_{9}^{2} \\
\vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6} \\
y_{7} \\
y_{8} \\
y_{9} \\
\vdots \\
y_{n}
\end{array}\right]}
\end{gathered}
$$

More complex functions

$$
\left[\begin{array}{cccccc}
1 & x_{1} & x_{1}^{2} & x_{1}^{3} & \sin \left(x_{1}\right) & e^{x_{1}} \\
1 & x_{2} & x_{2}^{2} & x_{2}^{3} & \sin \left(x_{2}\right) & e^{x_{2}} \\
1 & x_{3} & x_{3}^{2} & x_{3}^{3} & \sin \left(x_{3}\right) & e^{x_{3}} \\
1 & x_{4} & x_{4}^{2} & x_{4}^{3} & \sin \left(x_{4}\right) & e^{x_{4}} \\
1 & x_{5} & x_{5}^{2} & x_{5}^{3} & \sin \left(x_{5}\right) & e^{x_{5}} \\
1 & x_{6} & x_{6}^{2} & x_{6}^{3} & \sin \left(x_{6}\right) & e^{x_{6}} \\
1 & x_{7} & x_{7}^{2} & x_{7}^{3} & \sin \left(x_{7}\right) & e^{x_{7}} \\
1 & x_{8} & x_{8}^{2} & x_{8}^{3} & \sin \left(x_{8}\right) & e^{x_{8}} \\
1 & x_{9} & x_{9}^{2} & x_{9}^{3} & \sin \left(x_{9}\right) & e^{x_{9}} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & x_{n}^{3} & \sin \left(x_{n}\right) & e^{x_{n}}
\end{array}\right]\left[\begin{array}{c}
\theta_{0} \\
\theta_{1} \\
\theta_{2} \\
\theta_{3} \\
\theta_{4} \\
\theta_{5}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5} \\
y_{6} \\
y_{7} \\
y_{8} \\
y_{9} \\
\vdots \\
y_{n}
\end{array}\right]
$$

