CME 192: Introduction to MATLAB Lecture 6

Stanford University

January 29, 2019

Review

Ordinary Differential Equations

Solving Equations

Function Approximation

Review

Review

Lecture 5

- Timing
- Optimization
 - Preallocation
 - Vectorization
 - Using in-built functions
 - Memory layout
- Error Handling

Review

Ordinary Differential Equations

Solving Equations

Function Approximation

Ordinary Differential Equations

Ordinary

▶ one independent variable (usually time, t)

cannot be time and length (heat flow problem)
 Differential

 $x', \dot{x}, \frac{dx}{dt}$ $x'', \ddot{x}, \frac{d^2x}{dt^2}$ $x''', \ddot{x}, \frac{d^3x}{dt^3}$

Equations

- $\blacktriangleright \ \dot{x} = f(t, x)$
- e.g. $\dot{x} = -x^2 + t$;
- multiple equations are OK

Dynamics Equations

Dynamics Equations are Ordinary Differential Equations

ma = F $v = \dot{x}$ $a = \dot{v} = \ddot{x}$

so

$$\ddot{x} = \frac{F}{m} = \frac{1}{m}F(t,x)$$

is an Ordinary Differential Equation

$$\ddot{x} = f(t, x)$$

Solving Ordinary Differential Equations

- choose starting point (initial conditions)
- advance in time, for example:

$$\begin{aligned} x(0) &= x_0 \\ x(t + \Delta t) &= x(t) + \Delta t \cdot f(t, x(t)) \end{aligned}$$

- repeat till desired time is reached
 - more accurate methods exist

$$f(t, x) = x$$

$$\Delta t = 0.1$$

$$x(0.0) = x0 = 1$$

$$x(0.1) = 1 + 0.1 * 1.0 = 1.1$$

$$x(0.2) = 1.1 + 0.1 * 1.1 = 1.21$$

$$x(0.3) = 1.21 + 0.1 * 1.21 = 1.33$$

$$x(0.4) = 1.33 + 0.1 * 1.33 = 1.46$$

$$x(0.5) = 1.46 + 0.1 * 1.46 = 1.61$$

First Order Ordinary Differential Equations

$$\dot{x} = x^2 + t \qquad \Longrightarrow \qquad [\dot{x}_1] = [x_1^2 + t]$$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1^2 + t \end{bmatrix}$$

$$\ddot{x} = x^2 + t \qquad \Longrightarrow \qquad \text{Notice that}$$

$$\frac{d}{dt}x_2 = \dot{x}_2 = \frac{d}{dt}\dot{x}_1 = \ddot{x}_1$$

$$\vdots$$

$$\vdots$$

$$\ddot{x} = \dot{x} - x^2 + t \qquad \Longrightarrow \qquad \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_3 \\ x_4 \\ x_2 - x_1^2 + t \end{bmatrix}$$

Ordinary Differential Equations

_

Solving First Order Ordinary Differential Equations

Procedure

- **1**. write the function f(t, x)
- choose time span on which to solve (just start and end points are OK)
- choose initial conditions (of x)
- 4. run a differential equation solver

```
1 % 1. write the function
2 f = @(t, x) -x^2 + t;
3 % 2. time span
4 % (doesn't affect accurracy)
5 tspan = linspace(0, 10, 1e3);
6 % 3. initial conditions
7 x0 = 0;
8
9 % 4. run solver
10 [T, X] = ode45(f, tspan, x0);
```

Review

Ordinary Differential Equations

Solving Equations

Function Approximation

Finding a zero of a function

Zeros of a polynomial

- <roots> = roots(<poly_coeff>), e.g. r = roots([2, 3, 1])
- always works, gives complex roots too

> Zeros of a univariate f(x) = 0 function

- <x_zero> = fzero(<fn>, <x_guess>)
- doesn't always work, function has to change sign at zero

- solves:
$$x^2 - 2 = 5x + 2 \implies f(x) = x^2 - 2 - 5x - 2 = 0$$

System of equations $\begin{bmatrix} f_1(x, y, z) \\ f_2(x, y, z) \\ f_3(x, y, z) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$

- <x_zero> = fsolve(<Fn>, <x_guess>)
- takes a function Fn = @(X) where Fn is a vector of functions and X is a vector of variables
- doesn't always work, function has to change sign at zero

Solving Systems of Linear Equations

$$\begin{cases} 3x + 5y + z = 0 \\ 7x - 2y + 4z = 2 \\ -6x + 3y + 2z = -1 \end{cases} \implies \begin{bmatrix} 3 & 5 & 1 \\ 7 & -2 & 4 \\ -6 & 3 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ -1 \end{bmatrix}$$
$$\xrightarrow{Ax = b} \\ x = A^{-1}b$$
$$x = A^{-1}b$$
$$x = A^{-1}b$$
$$x = A^{-1}b$$

Solving Systems of Linear Equations

Ax = b

Matrix Inverse

 $1 | \mathbf{x} = \mathsf{inv}(\mathbf{A}) \ast \mathbf{b}$

- unique solution must exist (gives garbage otherwise)
- same number of equations and unknowns

Matrix Pseudoinverse

1 | x = pinv(A) * b

- ▶ if matrix is invertible, same answer as inv
- if matrix is not invertible
 - if too many equations: smallest total error
 - if too few equations: smallest vector that satisfies equations

Backslash

 $1 | \mathbf{x} = \mathbf{A} \setminus \mathbf{b}$

very advanced, chooses best algorithm

Review

Ordinary Differential Equations

Solving Equations

Function Approximation

Finding a line between points

$$f(x) = mx + b$$

Between two points

$$\begin{aligned}
mx_1 + b &= y_1 \\
mx_2 + b &= y_2
\end{aligned}$$

solving for $m \mbox{ and } b.$ In matrix form

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

Between more points

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

Best fit

$$\begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix}$$

has no unique solution. Try to find such \boldsymbol{m} and \boldsymbol{b} that error is smallest

$$\left| \left| \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ 1 & x_4 \end{bmatrix} \begin{bmatrix} b \\ m \end{bmatrix} - \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} \right| = \operatorname{error} = ||A\theta - y||$$

1 th = A \setminus y

Quadratic fit

$\begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix} \qquad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$		f(x)	= a	$x^{2} + b$	b + c	;
$\begin{bmatrix} 1 & x_4 & x_4^2 \\ 1 & x_5 & x_5^2 \\ 1 & x_6 & x_6^2 \\ 1 & x_7 & x_7^2 \\ 1 & x_8 & x_8^2 \\ 1 & x_9 & x_9^2 \\ \vdots & \vdots & \vdots \\ 1 & x_8 & x^2 \end{bmatrix} \begin{bmatrix} c \\ b \\ a \end{bmatrix} = \begin{bmatrix} y_4 \\ y_5 \\ y_6 \\ a \end{bmatrix}$	$ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	f(x) x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 \vdots x	$\begin{array}{c} - & x \\ x_{1}^{2} \\ x_{2}^{2} \\ x_{3}^{2} \\ x_{4}^{2} \\ x_{5}^{2} \\ x_{6}^{2} \\ x_{7}^{7} \\ x_{8}^{2} \\ x_{9}^{2} \\ \vdots \\ x_{7}^{2} \end{array}$	$\begin{bmatrix} c \\ b \\ a \end{bmatrix}$	=	$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y_8 \\ y_9 \\ \vdots \\ y_7 \end{bmatrix}$

More complex functions

Γ1	x_1	x_{1}^{2}	x_{1}^{3}	$\sin(x_1)$	e^{x_1}		$\begin{bmatrix} y_1 \end{bmatrix}$
1	x_2	$x_2^{\overline{2}}$	$x_2^{\overline{3}}$	$\sin(x_2)$	e^{x_2}		y_2
1	x_3	x_{3}^{2}	x_{3}^{3}	$\sin(x_3)$	e^{x_3}	F . 7	y_3
1	x_4	x_{4}^{2}	x_{4}^{3}	$\sin(x_4)$	e^{x_4}	$\left \begin{array}{c} \theta_{0} \\ \theta \end{array} \right $	y_4
1	x_5	x_{5}^{2}	x_{5}^{3}	$\sin(x_5)$	e^{x_5}	$\left \begin{array}{c} \theta_1 \\ \theta_1 \end{array} \right $	$ y_5 $
1	x_6	x_{6}^{2}	x_{6}^{3}	$\sin(x_6)$	e^{x_6}	$\left \begin{array}{c} \theta_2 \\ \theta_2 \end{array} \right =$	y_6
1	x_7	x_{7}^{2}	x_{7}^{3}	$\sin(x_7)$	e^{x_7}	$\left \begin{array}{c} \theta_{3} \\ \end{array} \right $	y_7
1	x_8	x_{8}^{2}	x_{8}^{3}	$\sin(x_8)$	e^{x_8}	$\left \begin{array}{c} \theta_4 \\ \theta_4 \end{array} \right $	$ y_8 $
1	x_9	x_{9}^{2}	x_{9}^{3}	$\sin(x_9)$	e^{x_9}	$\lfloor \theta_5 \rfloor$	$ y_9 $
:	:	:	:	:	:		:
1	\dot{x}_n	$\dot{x_n^2}$	x_n^3	$\sin(x_n)$	e^{x_n}		$\begin{vmatrix} \cdot \\ y_n \end{vmatrix}$