
CME 192: Introduction to MATLAB
Lecture 5

Stanford University

January 28, 2019

Outline

Review

Timing

Optimization
Preallocation
Vectorization
Using in-built functions
Memory Layout
Summary

Profiling

Error Handling

Review 2/19

Review

Lecture 4
I Plain text vs binary

I Saving and loading workspaces (binary)

I Comma Separate Values files (plain text)

I Delimited files (plain text), dlmread, dlmwrite

I Custom files (plain text), fprintf, textscan

I Java Script Object Notation (plain text), jsondecode

I Data Treatment

– Interpolation
– Filtering
– Polynomial Fitting

Review 3/19

Outline

Review

Timing

Optimization
Preallocation
Vectorization
Using in-built functions
Memory Layout
Summary

Profiling

Error Handling

Timing 4/19

How to measure time?

I one way to measure time is since a given point

– since the computer was turned on
– since this program started
– since January 1st 1970 (Unix computers)

I now() gives number of days since January 1st 0000 (2019 years ago)

>> now()

ans = 737452.777159401

>> now() / 365.25

ans = 2019.03566723481

Timing 5/19

Representing Date, clock()

clock()

I returns a vector, not a single
number

I represents years, months,
days, hours, minutes and
seconds separately

I good accurracy, takes
operating system time

I not great resolutions, but
seconds have fractional values

1 d a t e = c l o c k ()
2
3 y e a r s = d a t e (1)
4
5 s e c o n d s = d a t e (end)

date =

2.0190e+03 1.0000e+00

2.7000e+01 1.9000e+01

0.0000e+00 5.7416e+01

years = 2019

seconds = 26.926

Timing 6/19

Timing Execution

tic and toc

I timers have resolution

I execution timing requires
high resolution timers

I MATLAB provides the tic

and toc pair

I general execution timing tips

– try to time several runs
and average

– each loop run has a small
overhead

1 A = rand (1 e3 , 1 e3) ;
2
3 t i c () ;
4 Ainv = p i n v (A) ;
5 t o c () ;
6
7 t = t i c () ;
8 Ainv = p i n v (A) ;
9 t o c (t) ;

10
11 t = t i c () ;
12 Ainv = p i n v (A) ;
13 e l a p s e d s = t o c (t)

Elapsed time is 1.3045 seconds.

Elapsed time is 1.2820 seconds.

elapsed_s = 1.2992

Timing 7/19

Outline

Review

Timing

Optimization
Preallocation
Vectorization
Using in-built functions
Memory Layout
Summary

Profiling

Error Handling

Optimization 8/19

Preallocation

I MATLAB arrays are resizable

I but memory regions aren’t
actually resizable

I each time an array is resized,
MATLAB:

– allocates a new, bigger
memory area

– copies old contents to the
new memory area

– deletes the old memory
area

I MATLAB attempts to avoid
doing that often by:

– allocating more memory
than strictly required

– guessing how long the
array’s going to be

Dynamic Resizing

1 a = [] ;
2 a (1) = 2 ;
3 a (2) = 3 ;
4 a (3) = 5 ;
5 a (end + 1) = 7 ;
6
7 % m i s s i n g i s f i l l e d w i t h

z e r o s
8 a (end + 14) = 7 3 ;

Preallocation

1 a = z e r o s (1 , 21) ;
2 a (1) = 2 ;
3 a (2) = 3 ;
4 a (3) = 5 ;
5 a (4) = 7 ;
6 a (end) = 7 3 ;

Optimization Preallocation 9/19

Vectorization Operations

I element-wise math
operations

I element-wise in-built
functions

I vector indexing

I logical indexing

1 x1 = rand (1 , 1 e5) ;
2 x2 = rand (1 , 1 e5) ;
3
4 % element−w i s e math
5 y = x1 . / x2 ;
6
7 % in−b u i l t f u n c t i o n s
8 y = exp (x1 + x2) ;
9

10 % v e c t o r i n d e x i n g
11 y = x1 (1 : 2 : end) ;
12 y = x2 (1 : f l o o r (l e n g t h (x2) , 2)) ;
13 y = x1 ;
14 y (2 : 2 : end) = −x2 (2 : 2 : end) ;
15
16 % l o g i c a l i n d e x i n g
17 y = x1 ((x1 > 0 . 5) & (x1 < 0 . 7 5)) ;
18 y (x2 > 0 . 2) = x2 (x2 > 0 . 2) ;

Optimization Vectorization 10/19

Benefits of Vectorization

I speed-up (up to 100s times)

I parallelization

I shorter, cleaner, more readable code

Optimization Vectorization 11/19

In-Built Functions are Faster

I search documentation for an
existing function

I in-built functions are
compiled

– slower to write
– difficult to read
– faster

I user functions are
dynamically interpreted

– faster to write
– easy to read
– slower

1 f u n c t i o n ax = my abs (x)
2 ax = x ;
3 x (x < 0 . 0) = −x (x < 0 . 0) ;
4 end

>> x = rand(1, 1e5) - 0.5;

>> y = my_abs(x); % slow

>> % vs in-built

>> y = abs(x); % much faster

Optimization Using in-built functions 12/19

Memory Layout

I all memory is laid out linearly
I MATLAB uses column-major order
I CPUs optimize accessing memory (vector entries) close to each

other
– CPU has a cache
– each element access loads neighboring elements
– if neighboring element is in cache, retrieval is very fast

I cache aware looping not that important in dynamic languages like
MATLAB

A =

1 4 7
2 5 8
3 6 9

A(1:4) =

1 2 3 4 5 6 7 8 9

A =

1 4 7
2 5 8
3 6 9

A(1:size(A, 1):end) =

1 2 3 4 5 6 7 8 9

Optimization Memory Layout 13/19

Summary

Technique Impact

Preallocation Small
Vectorization Large

Using in-built functions Medium
Memory Layout Negligible (in MATLAB)

Optimization Summary 14/19

Outline

Review

Timing

Optimization
Preallocation
Vectorization
Using in-built functions
Memory Layout
Summary

Profiling

Error Handling

Profiling 15/19

Profiling

I profile tool in
MATLAB

I best way to optimize code
is to determine which
operations are time
consuming

I profiling measures time
spent in each function

I useful for finding
bottlenecks

1 % t u r n on p r o f i l i n g
2 p r o f i l e on
3 % <o p e r a t i o n s >
4 % . . .
5 % <o p e r a t i o n s >
6 p r o f i l e o f f
7
8 p r o f i l e v i e w e r % MATLAB o n l y
9

10 i n f o = p r o f i l e (’ i n f o ’) ;
11 p r o f i l e c l e a r
12
13 % use i n f o data s t r u c t u r e
14 i n f o . F u n c t i o n T a b l e . TotalTime
15 i n f o . F u n c t i o n T a b l e . FunctionName

Profiling 16/19

Outline

Review

Timing

Optimization
Preallocation
Vectorization
Using in-built functions
Memory Layout
Summary

Profiling

Error Handling

Error Handling 17/19

Displaying Errors/Warnings

Errors
I error prints an error and breaks execution immediately

1 f u n c t i o n b = mat mult (A, x)
2 i f s i z e (A, 1) ˜= l e n g t h (x)
3 e r r o r (’ M a t r i x d i m e n s i o n s do not match ’) ;
4 end
5
6 b = A ∗ x ; % m a t r i x m u l t i p l i c a t i o n
7 end

Warnings
I warning prints an warning and continues with execution

1 f u n c t i o n b = mat mult (A, x)
2 i f s i z e (A, 1) ˜= l e n g t h (x)
3 warn ing (’ M a t r i x d i m e n s i o n s do not match . R e t u r n i n g x ’) ;
4 b = x ;
5 e l s e
6 b = A ∗ x ; % m a t r i x m u l t i p l i c a t i o n
7 end
8 end

Error Handling 18/19

Catching/Handling Errors

I try, catch
block

I attempt to do
normal
operations in the
try block

I as soon as an
error occurs,
execution jumps
to the catch

block

I ME refers to the
error

I try, catch
blocks can be
nested

1 a = z e r o s (1 , r a n d i (1 0)) ;
2 t r y
3 % a might not be l o n g enough
4 d i s p (a (6)) ;
5 c a t c h ME
6 warn ing (’A i s not l o n g enough .

R e s i z i n g . . . ’) ;
7 a = z e r o s (1 , 6) ;
8 end
9

10 a

warning: A is not long enough. Resizing...

warning: called from

test at line 7 column 5

a =

0 0 0 0 0 0

Error Handling 19/19

	Review
	Timing
	Optimization
	Preallocation
	Vectorization
	Using in-built functions
	Memory Layout
	Summary

	Profiling
	Error Handling

