CME 192: Introduction to Matlab

Lecture 3

Over 600 Rhode Islands could fit inside Alaska

Stanford University

Lecture 2 Topics

- Scripts and functions
- Control flow
- Debugging

Lecture 3 Topics

- Data Structures
- Cell arrays
- Struct
- Plotting

Data Structs

- A structure array is a data type that groups related data using data containers called fields. Each field can contain any type of data.
- Access data in a structure using dot notation of the form structName.fieldName.

Data Struct Applications

- Very useful for organizing big sets of data.
- Saving time series and analysis on it.
- Common way of saving research data.

Struct Example

- Struct name is 'patient'
- Field names are 'name', 'billing', and 'test'.
patient


```
patient(1).name = 'John Doe';
patient(1).billing = 127.00;
patient(1).test = [79, 75, 73; 180, 178, 177.5; 220, 210, 205];
patient
```


Creating Data Structs

Z Variables - fruits_USDA	
$\mathrm{A} \times 1 \mathrm{~B} \times$	fruits_USDA x
Field ${ }^{\text {s }}$	Value
\# number	9003
20c name	'APPLES,RAW,WITH SKIN'
\pm calories	52
\pm protein	0.2600
\# carbohydrates	13.8100
$\#$ fiber	2.4000
\#sugar	10.3900
$\#$ scaling	109
2065 serving	'1 cup, slices'

Appending to Structs

We perform the same process but we add a second element to our struct.

```
%Appending to dtruct
fruits USDA(2) = struct('number', 09038,'name', 'AVOCADOS,RAW,CALIFORNIA',...
    'calories', 167, 'protein', 1.96, ...
    'carbohydrates', 8.64, 'fiber', 6.8, 'sugar', 0.3,...
    'scaling', 136, 'serving', '1 fruit, without skin and seed');
```

The same field names must be used. In the variable editor each row is a different fruit.

Creating a Large Array of Struct

Each field name is given and the respective values are given in " $\}$ ".

```
fruits_USDA = struct(...
    'number', {9003, 9038, 9050, 9070, 9148, 9176, 9191, 9316},...
    'name', {'APPLES,RAW,WITH SKIN','AVOCADOS,RAW,CALIFORNIA',...
            'BLUEBERRIES,RAW','CHERRIES,SWEET,RAW','KIWIFRUIT,GRN,RAW',...
            'MANGOS, RAW', 'NECTARINES,RAW','STRAWBERRIES, RAW'}, ...
    'calories', {52 167 57 63 61 60 44 32},...
    'protein', {0.2600 1.9600 0.7400 1.0600 1.1400 0.8200 1.0600 0.6700},...
    'carbs', {13.8100 8.6400 14.4900 16.0100 14.6600 14.9800 10.5500 7.6800},...
    'fiber', {2.4000 6.8000 2.4000 2.1000 3.0000 1.6000 1.7000 2.0000},...
    'sugar', {10.3900 0.3000 9.9600 12.8200 8.9900 13.6600 7.8900 4.8900},...
    'scaling', {109 136 68 138 69 336 129 152},...
    'serving', {'1 cup, slices','1 fruit, without skin and seed',...
        '50 berries','1 cup, with pits yields','1 fruit, (2" dia)',...
        '1 fruit, without refuse','1 small, (2-1/3" dia)',...
        '1 cup, halves'});
```


Copying and Modifying a Struct

```
fruits_CAL = fruits_USDA
```

Makes a hard copy of the struct. Changes to one struct will not be updated in the other.

Updates can be made

```
fruits_CAL (1) .number = 1;
fruits_CAL (2) .number = 2;
fruits_CAL (%).number = 3;
```

© \times Editor-L3_scratch.m

Plotting in Matlab

- When using a Matlab plot function a new window will automatically come up.
- You can define new figure windows by using the command 'figure'
- Figures can be numbered such as figure(1); figure(2); figure(3);

Plotting Options

- Matlab will plot over whichever figure is open by default. To plot a second graph over that one use 'hold on'.
- 'xlablel', 'ylabel', and 'zlabel' are all used to label the axes.
- A legend can be added by using 'legend’ and listing all the domains.

Types of Plots

- Bar
- Line
- Scatter
- 3D

Bar Plot

Creates the bar plot and plots the values from the designated fields.

- Creates the labels for the plot.
- gca stands for "get current axes."

Plot Output

\%\% Basic bar plot
bar([[fruits_USDA.protein]', [fruits_USDA.fiber]', [fruits_USDA.sugar]']) set (gca, 'XTickLabel', \{fruits_uSDA. name\}, 'XTickLabelRotation', 45) ylabel('Grams per 100 grams')
legend('protein', 'fiber', 'sugar')

Stacking the Bars

Create new variable

Stacking the Bars

```
%% Stacked bar plot
other_carbs = [fruits_USDA.carbs]'-...
    [fruits_USDA.fiber]'-[fruits_USDA.sugar]';
bar([[fruits_USDA.fiber]', [fruits_USDA.sugar]',...
    other_carbs], 'stacked')
set(gca, 'XTickLabel', {fruits_USDA.name}, 'XTickLabelRotation', 45)
ylabel('Grams per 100 grams')
legend( 'fiber', 'sugar', 'other carbs')
```


3D Bar Graph

```
We now use the function 'bar3'
```


- The x, y, and z axes are labeled.
- In y we give the fruit names.
- In x we give the calorie type.
- In z we give the grams.

3D Bar Graph

```
%% 3D bar plot
bar3([[fruits_USDA.protein]', [fruits_USDA.fiber]', [fruits_USDA.sugar]' ])
set(gca, 'YTickLabel', {fruits_USDA.name})
set(gca, 'XTickLabel',{'protein', 'fiber', 'sugar'})
zlabel('Grams per 100 grams')
```


Plotting Additional Data

```
%% Bar plot with errorbars and max/min values
figure()
hold on
h1 = bar([fruits_uSDA.protein]);
for ifruit = 1:size(fruits_USDA,2)
    %Plot standard deviation as error bar
    h2 = errorbar(ifruit, fruits_USDA(ifruit).protein, ...
        fruits_USDA(ifruit).protein_stats(1),'r');
    %Plot min and max measurements
    h3 = plot(ifruit, fruits_uSDA(ifruit).protein_stats(2), 'ro',...
        'MarkerFaceColor', 'r');
    h4 = plot(ifruit, fruits_USDA(ifruit).protein_stats(3), 'rs',...
        'MarkerFaceColor', 'r');
end
title('Protein content in fruits')
set(gca, 'XTick', 1:8, 'XTickLabel', {fruits_USDA.name}, 'XTickLabelRotation', 45)
ylabel('Grams per 100 grams')
legend([h1 h2 h3 h4], {'Mean', 'Standard error', 'Min', 'Max'})
```


Plotting Additional Data

Plotting Numerical Functions

```
x = 0:pi/100:2*pi;
y = sin(x);
plot(x,y)
```


https://www.mathworks.com/help/matlab/ref/plot.html

Plotting Options

```
x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));
Markers and line parameters can be modified.
```


Plotting Options

```
plot(X,Y)
plot(X,Y,LineSpec)
plot(X1,Y1,\ldots.,Xn,Yn)
plot(X1,Y1,LineSpec1,...,Xn,Yn,LineSpecn)
Line
    LineStyle - Line style
    '-'(default)|'--'|':'|'-.'|'none'
LineWidth - Line width
    0.5 (default) | positive value
Color - Line color
    [0 0 0] (default)|RGB triplet|'r'|'g'|'b'|...
LineJoin - Style of line corners
    'round' (default)|'miter'|'chamfer'
AlignVertexCenters - Sharp vertical and horizontal lines
    'off' (default)|'on'
https://www.mathworks.com/help/matlab/ref/matlab.graphics.chart.primitive.line-properties.html https://www.mathworks.com/help/matlab/ref/plot.html
```


Another Way of Viewing Data?

```
x = linspace(0,3*pi,200);
y = cos(x) + rand(1,200);
plot(x, y)
```

Line plots may not always be the best method for viewing data

Scatter Plot

```
x = linspace(0,3*pi, 200);
y = cos (x) + rand (1,200);
scatter(x, y)
```

Places data points but does not connect them.

Scatter Plots

```
x = linspace (0,3*pi,200);
y = cos(x) + rand(1,200);
c = linspace(1,10,length(x));
scatter(x,y,[],c)
        \uparrow
    size
```


Scatter Plots

```
x = linspace (0,3*pi,200);
y = cos(x) + rand(1,200);
c = linspace(1,10,length(x));
scatter(x,y,[],c)
        \uparrow
    size
```


