
Matlab: What is it?
• Computing & programming environment
•  High-level, interpreted language
•  Rapid prototyping & integrated debugging

•  Built-in graphics & visualization tools

•  Built-in toolboxes for many applications

• Compared to other common languages
•  C/C++ is a low-level, compiled language
•  Better performance

•  Harder to write, difficult data visualization, harder to employ toolboxes,
longer codes, less portable

•  Python
•  Somewhere in between

September 29, 2016 Lecture 1 2

Matlab: Why learn it?
• Computation and data analysis are two fundamental

components of virtually any discipline.

•  Math
•  Science

•  Engineering

•  Humanities

•  Social Sciences

• A little bit of time upfront to write a (good) Matlab code can
yield a long-term tool to iteratively test & debug algorithms,
explore & process data, automate calculations & analysis,
visualize results, etc.

September 29, 2016 Lecture 1 3

Lecture 1 Topics
• Basic concepts
•  Variables, expressions, & assignments

•  Operators

•  Built-in functions

•  Good programming practices

•  Data types

• Vectors and matrices

•  Strings and cell arrays
• Getting help

September 29, 2016 Lecture 1 7

Basic concepts

September 29, 2016 Lecture 1 8

A variable is any symbolic representation for a “value”
An assignment gives the variable its value.

An expression is a mathematical statement which evaluates to a value

EDU>> x = 10;
EDU>> y = 20;
EDU>> z = x+y;
EDU>> z

z =

 30

Working on the
command line

x, y, and z are
variables

10 and 20 are values
the expression (x+y) is evaluated to a value (30)

Assignments can use values,
previously defined variables, operators,
functions, and parentheses

A semicolon at the end of a line represses
output; no semicolon displays the
evaluated result of the variable (or
expression) on the line

• Operators:
Addition: + Subtraction: –

Multiplication: * Division: /

Exponentiation: ^

• Order of operations (including parentheses) as usual

• Common built in functions:
•  Trig: sin(), cos(), tan(), sind(), cosd(), atan()

•  Exponentials: exp(), log()

•  Complex: abs(), conj(), imag(), real()
•  Rounding: round(), floor(), ceil(), mod()

September 29, 2016 Lecture 1 9

Basic concepts

• Variable names
•  Must begin with a letter, but can contain letters, numbers, and

underscores
•  Apart from the underscore, no other special characters (including spaces)

are allowed.

•  Case sensitive
•  Length limited (use the function namelengthmax in the command

window to determine this value)

•  Cannot/should not use reserved words (such as names of built-in
functions, such as sin(), or predefined values, such as pi)

September 29, 2016 Lecture 1 10

Basic concepts

Good programming practices
Ø Expressions & Assignments

Ø If an assignment or expression is very long (i.e. longer than the command/editor window),
it can be broken between several lines using an ellipsis (three periods in succession).

Ø Variables
Ø Use meaningful/conventional variable names:

 force = jedi*midichlorian
 is going to be harder to understand when you look back on your physics homework code than
 force = mass*accel

Ø Use relatively short names:

 root_mean_squared_velocity
 while descriptive, is going to be a pain to type; a simpler choice might be
 vel_rms

Ø  Don’t make variable names too similar:
 rcubed and rCubed is asking for a debugging nightmare

Ø Be consistent in case & capitalization style
Ø underscore_case
Ø camelCase

September 29, 2016 Lecture 1 11

•  Data types (values that can be assigned to variables)
•  Numbers
•  Integers – entered without a decimal point
•  Real – use realmin and realmax to return the smallest and largest real

numbers represented in Matlab
•  Complex – represented in rectangular form; imaginary unit defined as i

and j in Matlab

•  “Non-numbers”: -Inf, Inf, NaN

•  Vectors/matrices
•  Strings
•  Cell arrays
•  Structures, function handles, plot handles, …

September 29, 2016 Lecture 1 12

p
�1

EDU>> i

ans =

 0 + 1.0000i

Basic concepts

Vectors and Matrices

• Store values of the same type only

September 29, 2016 Lecture 1 13

5 + 6i

scalar
(complex)

 4

-2

 8 8.2 NaN 92.9 -3.5

3x1 row vector
(integer)

1x4 column vector
(real)

 8 7 92 -3
17 5 -1 0

 6 -8 7 10

3x4 matrix
(integer)

Creating Row Vectors

September 29, 2016 Lecture 1 14

Use brackets with comma or simply space
separated elements

Using the colon operator you can choose
a beginning value, end value, and
increment size (all of which must be
integers or real numbers, not complex)

EDU>> v = [1, 2, 3, 4]
v =
 1 2 3 4

 EDU>> v = 2:5

v =
 2 3 4 5

EDU>> v = 1.1:2.2:5.8
 v =
 1.1000 3.3000 5.5000

EDU>> v = linspace(1.1, 5.8, 3)
v =
 1.1000 3.4500 5.8000

linspace(start, end, n),
where n is the number of equal
increments in which to divide the
range start to end

Creating Column Vectors

September 29, 2016 Lecture 1 15

EDU>> v1 = [1; 2; 3; 4]

v1 =

 1
 2
 3
 4

EDU>> v2 = (2:5)'

v2 =

 2
 3
 4
 5

EDU>> v3 = [v1; v2]

v3 =

 1
 2
 3
 4
 2
 3
 4
 5

Use brackets with semicolon separated
elements

Transpose operator acting on row vector
(because operations within parentheses
evaluated first, could use colon operator
or linspace to form initial row vector)

Concatenating two column vectors. This
can also be done with two row vectors
using a comma or space separated
elements within the brackets.

Accessing & Modifying Vector Elements

September 29, 2016 Lecture 1 16

 1 2 3 4 5 6 7 8
EDU>> v = [1.2 -3.4 2.0 10.0 -12.5 3.1 72.9 4.1];

EDU>> v(5)

ans =

 -12.5000

EDU>> v(6:8)

ans =

 3.1000 72.9000 4.1000

EDU>> v([1 3 4])

ans =

 1.2000 2.0000 10.0000

EDU>> v(v<0)

ans =

 -3.4000 -12.5000

Access elements using
parentheses; here just a
single element is selected

The colon operator accesses a range
for which the start, end, and
increment can all be defined, but
must be integers

An index vector may be used to
access specific elements of interest

Logical indexing can be used to
identify elements that fulfill a
specified condition

Creating Matrices

September 29, 2016 Lecture 1 17

EDU>> M = [8 7 92 -3; ...
 NaN 5 -1 0;...
 6 -8 7 10]
M =

 8 7 92 -3
 NaN 5 -1 0
 6 -8 7 10

EDU>> M = [1:4; 9:-1:6]
M =

 1 2 3 4
 9 8 7 6

EDU>> M = [(linspace(1,10,3))',(2:4)', (-1:2:4)’]
M =
 1.0000 2.0000 -1.0000
 5.5000 3.0000 1.0000
 10.0000 4.0000 3.0000

Commas or spaces between
elements in rows, semicolons
between rows. Note the use
of an ellipsis to break up the
assignment expression

Colon operators and
linspace can also be used to
create the rows or columns.
Just make sure to use the
proper separator between
row vs column definitions!

Creating Matrices

September 29, 2016 Lecture 1 18

EDU>> M = [1 2 3; 4 5];
Error using vertcat
CAT arguments dimensions are not consistent.

Must have same number of
elements in each row and
same number of elements in
each column

•  Matlab also supplies a number of special matrix definitions, such as
zeros(), ones(), rand(), randi(), diag(), eye(), ...

Accessing & Modifying Matrix Elements

3 47 24 9

27 7 1 40

39 29 17 16

September 29, 2016 Lecture 1 19

row 1
row 2

row 3

EDU>> M(2,3)

ans =

 1

EDU>> M(:,2)

ans =

 47
 7
 29

EDU>> M(2,:)

ans =

 27 7 1 40

EDU>> M(1:2, [2,4])

ans =

 47 9
 7 40

Access element by
 (row number, column number)

Access all elements in a
row for specified column

Access all elements in a
column specified row

For a specified range of
rows, access specific
columns

Accessing & Modifying Matrix Elements

September 29, 2016 Lecture 1 20

EDU>> M1 = [1 0; 2 3; 7 8];
M1 =

 1 0
 2 3
 7 8

EDU>> M2 = [10 11; 13 16];
M2 =

 10 11
 13 16

EDU>> M = cat(1, M1, M2)
M =

 1 0
 2 3
 7 8
 10 11
 13 16

EDU>> cat(2, M1, M2)
Error using cat
CAT arguments dimensions are not consistent.

cat(dimension, A, B),
concatenate two matrices, A and B,
along dimension

Accessing & Modifying Matrix Elements

September 29, 2016 Lecture 1 21

repmat(A, [n, m])
 repeat matrix A n times in first
dimension and m times in second
dimension

EDU>> M1

M1 =

 1 0
 2 3
 7 8

EDU>> M = repmat(M,[1,2])

M =

 1 0 1 0
 2 3 2 3
 7 8 7 8

Vector and Matrix Operations
• Matrix vs element-wise operations:

• Matrix multiplication:

• Element-wise multiplication:

September 29, 2016 Lecture 1 22

ae	 bf	

cg	 dh	

Vector and Matrix Operations

September 29, 2016 Lecture 1 23

EDU>> A
A =

 0 1
 2 3

EDU>> B
B =

-1 3
4 8

EDU>> A*B
ans =

 4 8
 10 30

EDU>> A.*B
ans =

 0 3
 8 24

Matrix-wise operation

Element-wise operation

Vector and Matrix Operations

Operation Matrix-wise Element-wise

Addition + +

Subtraction - -

Multiplication * .*

Left division \ .\

Right division / ./

Exponentiation ^ .^

September 29, 2016 Lecture 1 24

Left division: a\b ! b

a

Right division: a/b ! a

b

Vector and Matrix Operations
• Most functions which act on a scalar can be given a vector/

matrix argument and will act element-wise:

September 29, 2016 Lecture 1 25

EDU>> A = [4 16; 0 2];
EDU>> sqrt(A)

ans =

 2.0000 4.0000
 0 1.4142

• Functions of a matrix in the linear algebra sense are signified
by names ending in m: expm, funm, logm, sqrtm

EDU>> B = sqrtm(A)
B =

 2.0000 4.6863
 0 1.4142

EDU>> B*B
ans =

 4.0000 16.0000
 0 2.0000

Vector and Matrix Operations

September 29, 2016 Lecture 1 26

EDU>> v1 = [1 0 0];
EDU>> v2 = [0 1 0];
EDU>> dot_prod = dot(v1,v2)

dot_prod =

 0

EDU>> cross_prod = cross(v1, v2)

cross_prod =

 0 0 1

EDU>> A = [1 2 3; 4 5 6];
EDU>> A

A =

 1 2 3
 4 5 6

EDU>> A'

ans =

 1 4
 2 5
 3 6

EDU>> transpose(A)

ans =

 1 4
 2 5
 3 6

• Vector dot product and cross
product

• Matrix transpose

Strings

September 29, 2016 Lecture 1 27

•  Strings are vectors of characters.
EDU>> fruit = 'apple’

fruit =
apple

EDU>> fruit(1)

ans =
a

EDU>> fruit = ['apple'; 'mango'; 'peach'];
EDU>> fruit

fruit =
apple
mango
peach

EDU>> fruit(2,1)

ans =
m

EDU>> fruit = ['apple'; 'mango'; 'kiwi'];
Error using vertcat
CAT arguments dimensions are not consistent.

Single quotation marks

Cell arrays

September 29, 2016 Lecture 1 28

•  Cell arrays generalize matrices to allow for arbitrary entries. Each
element is called a “cell” and access of the cells is by numerical indexing

EDU>> fruit = {'apple', 'peach', 'mango’}
fruit =

 'apple' 'peach' 'mango'

EDU>> fruit(2)
ans =

 'peach'

EDU>> fruit = cat(1, fruit, {[2 0], 0, 'A'})
fruit =

 'apple' 'peach' 'mango'
 [1x2 double] [0] 'A'

EDU>> fruit(2,1)
ans =

 [1x2 double]

EDU>> fruit{2,1}
ans =

 2 0

EDU>> fruit{2,1}(1)
ans =

 2

Use curly braces to define a
cell array

Parentheses access specific
cells in the cell array

Cells don’t have to be of the
same type. Cell arrays can
be concatenated like
matrices

Again, parentheses access
the cell, while curly braces
access the contents of the
cell

Access an element of the
vector which is contained
within a cell of the array

Getting help
•  Information about Matlab can be found in Matlab’s help

facilities. Command line arguments include:
•  ︎helpbrowser: opens a new window which contains different ways helpbrowser: opens a new window which contains different ways

to obtain the correct information, like lists, a global index and a search
function.

•  ︎ help <function name> gives a short description of the function,
the syntax, and other closely related help functions. If more extensive
results are needed, try the command doc <function name>
which also opens the help browser window.

•  ︎ lookfor 'topic' gives the list of all possible function names
which contain the specific search word.

• Online: http://www.mathworks.com/help/matlab/
http://www.mathworks.com/matlabcentral/?s_tid=gn_mlc

September 29, 2016 Lecture 1 29

