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!! Chemical potential of dilute solutionsChemical potential of dilute solutions

!! Raoult’s Raoult’s LawLaw

!! Osmotic pressureOsmotic pressure

!! Van’t Hoff Van’t Hoff EquationEquation

!! Virial Virial expansionexpansion

!! Light scatteringLight scattering



Experimental Approaches

!! DirectDirect  measures of molecular weight may bemeasures of molecular weight may be
obtained from obtained from osmometryosmometry, light scattering, and, light scattering, and
ultracentrifugationultracentrifugation..

!! IndirectIndirect measures of molecular weight, such as measures of molecular weight, such as
viscometry viscometry and gel permeation chromatography,and gel permeation chromatography,
yield relative estimates that must be calibrated.yield relative estimates that must be calibrated.



Chemical Potential of Dilute Solutions

The chemical potential of a solvent in a solution is
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Raoult’s Law

In general, the activity is related to vapor pressure by

a
P

Ps
s

s
o=

If the solution is sufficiently dilute, Raoult’s Law
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Osmotic Pressure

Semipermeable membrane

Po + π 

Solution Pure solvent

Po

The osmotic pressure π is the additional pressure that
must be imposed to keep solvent and solution sections
at the same level.  This static method requires a long 
time to reach equilibrium.



Semipermeable Membrane Construction

!! Membranes for different solventsMembranes for different solvents

"" Organic - cellulose, gel cellophaneOrganic - cellulose, gel cellophane

"" Aqueous - cellulose acetate, nitrocelluloseAqueous - cellulose acetate, nitrocellulose

"" Corrosive - glassCorrosive - glass

!! Membrane porosityMembrane porosity

"" Must consider pore size and its distributionMust consider pore size and its distribution

!! Membrane conditioningMembrane conditioning

"" Membranes shipped in Membranes shipped in isopropanolisopropanol/water/water

"" Programmed sequence of solvent mixturesProgrammed sequence of solvent mixtures

"" Dried-out membranes should be discardedDried-out membranes should be discarded



Derivation of Van’t Hoff Equation
At constant temperature, the chemical potential depends
upon both pressure and composition.
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If no solvent flow occurs, dµs = 0



Derivation of Van’t Hoff Equation

The chemical potential is defined by
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Derivation of Van’t Hoff Equation
The volume of the system is given by
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Derivation of Van’t Hoff Equation

Recall the chemical potential
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Derivation of Van’t Hoff Equation
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Derivation of Van’t Hoff Equation
If the partial molar volume is independent of pressure, we have
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Derivation of Van’t Hoff Equation

Substitution yields π = RT
N

V solution
p

( )

Convert to concentration units of mass/volume
and take the limit as concentration goes to zero
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At last, we have the Van’t Hoff Equation.  Note that
it is applicable only at infinite dilution.

Compare this expression to the ideal gas law.



Virial Expression for Osmotic Pressure
In order to account for concentration effects in polymer
solutions, a virial expression is often used.
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A2 = second virial coefficient
A3 = third virial coefficient

Alternative expressions:
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Effect of Solvent Quality on
Osmotic Pressure
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A2 > 0 for a good solvent
A2 = 0 for a theta solvent
A2 < 0 for a poor solvent



Light Scattering

We will only summarize the results -- for background,
see, e.g., Allcock and Lampe, 2nd ed., pp 348-363.
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Light scattering arises from fluctuations in refractive
index, which can be related to the osmotic pressure.



Rayleigh’s Ratio, R(θ)
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w = scattering distance
Vs = scattering volume

λ  = incident wavelength
no = refractive index at λ
NA = Avogadro’s number



Relationship to Weight Average Molecular
Weight and Second Virial Coefficient
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P(θ) is the single chain form factor, which accounts
for the finite size of the macromolecule relative to
the wavelength of incident light.



Single Chain Form Factor for a Random Coil

For particles larger than λ/20, P(θ) is not unity.
For small angles (in the Guinier region) and a
random coil structure,
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Rg is the radius of gyration, which is a measure of the
three-dimensional structure of the random coil.
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Zimm Plot

Extrapolations to zero angle and zero concentration 
allow for determination of Mw, A2, and Rg.
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Eliminate shape effects:
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Eliminate intermolecular interactions:



Zimm Plot
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