

Monitoring of T&D Systems

Is there something useful in all the data?

Paul Myrda Technical Executive

Stanford University

May 7, 2013

Electric Power Research Institute

Generation

Delivery

Customer

Independent, Objective, Collaborative

Today's Power System

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Customer

How will customers use electricity?

Smart Grid Challenges

Top Down - 10 Smart Grid R&D Challenges

- Standards & Interoperability
- **Communications Technology**
- **Energy Mgmt Architecture & Integration**
- Security & Privacy
- Renewable & DER Integration
 - **Data Mgmt, Analysis & Visualization**
 - Grid Management & Planning (Bulk)
 - Smart Grid Cost Benefit Analysis
 - **Customer Integration Strategies**
 - Advanced Technology Assessments

Challenges: Turning Data into Opportunity & Value

Industry is creating more and more data

- From 1 Meter Read/mo to Hourly (720/mo)
- =71,900% increase in Data (((720-1)/1)*100%)

- No. Of PMU's installed has doubled in the past 12 months
- Generating Terabytes of data
- Transitioning from Implementation to Analysis

Management (Optimization) of the Grid = Management of Data

Maximizing Data Value Throughout it's Lifetime

The Opportunity

- Leverage Smart Grid Investments that are Producing High-Quality Data
- Integrated Data Sources across different organizational groups
- Apply advanced data mining algorithms
- Demonstrate the data analytics applications
 - Planning Operation, and Asset Management

Improve Reliability – Increase Operational Efficiencies

Data Integration for Asset Management and Operations

Backdrop

- Power Delivery has:
 - Asset related data available in the field
 - Knowledge about asset behavior
 - Maintenance management systems & methods
 - Sensor technology available to monitor assets

So what is the challenge?

What if I only knew....

- When this circuit breaker last operated
 - -Was it slow or within specification
 - Did it clear a fault or just opened for maintenance
 - Has it seen many faults, at what energy level
 - How are other similar units doing
- Is this transformer doing okay
 - Is it gassing
 - Are its winding loosening up
 - Has it seen many faults, at what energy level
 - How are other similar units doing

Our Generation Colleagues get it

Saves up to

\$35,000,000

KCP&L Avoids Surprise Equipment Failure Fleetwide

Entergy's "Big Catch"

Click here to find out how.

Read how KCP&L protects their entire fleet.

Leading Companies Use PRiSM

SOUTHERN

(PRiSM Deployed Across Fossil Plants)

(PRiSM Used For Gas Turbine Monitoring)

Eskom

(Fleet Wide Generation Monitoring. Extending Transformer Monitoring)

- Exelon. (Fleet-wide Nuclear Implementation in Central Performance Monitoring Facility)
- 🔀 Prog
- (Fleet-wide Implementation With Over 2,000 models built for Gas and Coal generation equipment)

Plant Process Computers Monitor Critical Elements

TINSTEP

What's the problem?

How big is the gap?

© 2013 Electric Power Research Institute, Inc. All rights reserved.

An Existing Architecture Example

An Example Future Architecture

Uniqueness of Utility Data

The uniqueness of the utility market requires unique technologies and architectures

Other issues

- Data ownership
- Naming
- Location
- Understanding the broader enterprise value
- Data decimation
- Periodicity
- Latency
- Asset Testing
- System conditions
- System topology

Field Data for Asset Management and Operations

Using CIM models provides the basis for analytics that improves decision making.

Recent Project Demonstrations

Synchrophasor-based Situational Awareness and Decision Support

Synchrophasor & Other Data for Disturbance Location Identification

- Use data from PMUs and other sources to identify disturbance location and magnitude
 - frequency wave propagation $\Box \Delta F$ and system frequency bias

LECTRIC POWER

Synchrophasor-Based Early Warning of Inter-Area Oscillations

- Identifying vulnerable grid interfaces based on mode shapes of inter-area oscillations
- Providing a risk index of angle separation on the grid interfaces

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Synchrophasor & Other Data for System Dynamic Model Development & Validation

Process Basics

- Use on-line disturbance data or staged test data from generators, loads, et. al.
- Software tool to determine appropriate generic dynamic model parameter values
- Validate individual component models and overall system response

Validate Power Plant Models for NERC MOD-26/27 Standards

The Power Of Holistic Analytics

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Using AMI Data to Identify Meter Phasing

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Using AMI Data to Auto-Generate Secondary Circuit Models

Problem: Utilities don't have models of secondaries, or they are poor.

A Solution: Use voltage and current from AMI to auto-build secondary circuit models.

Secondary model based on AMI data was better than the utility model

Using AMI and Sensor Data for Distribution State Estimation (DSE)

DSE improves reliability of advanced distribution applications

Example: Combinations of Related Data Items

© 2013 Electric Power Research Institute, Inc. All rights reserved.

Pattern Recognition

Hydro Quebec: Using Feeder Monitors to Locate Faults and Estimate Cause

A dangling phase conductor that caused multiple momentaries

Another case of a bad insulator causing repeat momentaries

Enabling Technologies that are Emerging

- Enterprise architecture
- Visualization technology
- Database technology
- Standards for interoperability
- Sensor technology

Some Data Examples

Relay Event Logs (event, waveform, configuration)

030201,13384930,-4d,Magella,SOUTHSIDE LINE PRI#16,APCo,,,04305n,07767w.SEL

FID=SEL-121G-5-R413-V656mptr12syzfs2-D941021-E2										
Currents					Voltages		Rel	ays Outputs Inputs		
(amps)				(kV)						
					52265			L TCAAAAA DPBD5E		
IPOL	. IR	R IA	IB	IC	VA	VB	VC	011710 PL1234L TTTC2T		
8	15	-8	-102	102	-63.4	57.0	6.8	*.		
0	-15	94	-64	-26	-28.8	-40.6	69.6	*.		
-8	-15	4	98	-106	63.5	-57.0	-6.8	*		
0	30	-98	64	30	28.8	40.7	-69.6	*.		
8	-15	0	-94	106	-63.5	56.9	6.9	*.		
0	-15	98	-64	-30	-28.7	-40.8	69.6	*.		
-8	15	0	94	-102	63.5	-56.9	-7.0	*		
0	0	-98	68	26	28.6	40.9	-69.6	*.		

Event : EXT Location : mi ohms sec Duration: Flt Current: R1 =0.40 X1 =2.26 R0 =1.96 X0 =6.90 LL =3.01 CTR =240.00 PTR =1000.00 MTA =75.00 LOCAT=Y 79OI1=10000.00 79OI2=10000.00 79OI3=10000.00 79RS =8000.00 Z1% =90.00 Z2% =140.00 Z3% =171.00 Z2SP =0.00 Z2DP =25.00 Z3DP =90.00

Kohonen Neural Networks

Relay Signature Analysis (cluster analysis & movie)

Thank you!

Paul Myrda

pmyrda@epri.com 708-479-5543

Together . . . Shaping the Future of Electricity