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I Overview

Sustainability and Data Centers

Data mining applications
Chiller operation characterization
PV prediction

Anomaly detection




Motivation
Industry challenge:

Create technologies, IT infrastructure and business
models for the low-carbon economy

IT industry .. Aviation
Total carbon emissions

2% 2%
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I Sustainability

“sustainable development is development that meets
the needs of the present without compromising the
ability of future generations to meet ’rEeir own
needs”

the Brundiland Commission of the United Nations, 1987
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Sustainability
What do | mean by “sustainability”?

Social
Risk: Ecological (“People”)

Damage

Risk: Commercially
unfeasibility

Sustainable

Economic

(“Profit”)

Environmental
(“Planet”)

Risk: Limited

Adoption
/
Figure Credit: A. Agogino, UC Berkeley
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Environmental Sustainability

Impact factors (e.g., carbon, water, toxicity, etc.)
Life Cycle View
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Sustainable Data Centers

Lifecycle Assessment
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Cloud Data Center
Supply and Demand Side
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Supply and Demand in a Data Center

Onsite Power Grid
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I Sustainable Operation and Management of
Chillers using Temporal Data Mining (KDD ‘09)

Data Centers

Cooling Infrastructure

Problem Statement
Prior Work
Our Approach

Symbolic representation

Event encoding

Motit mining

Sustainability characterization

Experimental Results

Summary @




Data Center Cooling Infrastructure

Consumes from 1/3 up to 1/2 of total power consumption

Cooling Towers

Cooling Tower water loop

Chiller Unit

T;o'nd Water Woater
Return —P Supply
Chiller Refrigerant loop (Tm) (TOUf)

Evaporator

.

Chilled Wate
loop

{/MIZM/
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Computer room air-conditioner
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Ensemble of Chillers

Challenging to operate efficiently

Complex physical system
Dynamic
Heterogeneous
Inter-dependencies
Many constraints

Accurate models not available Chiller Ensemble
Rapid cycles undesirable — reduce . Which unit to
litespan turn ON/OFF?
. . . + At what
Domain experts determine settings utilization?

How to handle
increase/decrease
in cooling load?

based on heuristics

Can it be automated through a dato-
driven approach? QD
/




I Problem Statement

Given the following chiller time series

utilization levels

power consumption

cooling loads
Is it possible to determine which operational
settings are more energy efficient?

And then use this information to advise data
center facility operators




I Some Terminology

IT cooling load
Chiller utilization
Chiller power consumption

Coetticient of performance (COP)
Cooling Load

Power consumption




I Prior Work

Classical approaches to model time series data
Principal component analysis

Discrete Fourier transtorms
Discrete representations: SAX [Keogh et al.]
Motits: Repeating subsequences [Yankov et al.]




Our approach

Goal: Sus’rainobili’?/

characterization o

Multivariate Time Series Data

il =
~T—

Chiller utilization data 0 ]

Four Main Steps Cluster Analysis
Symbolic representation {/ Symbolic representation
Event encoding Other discrefe Event Encoding
Motif mining Cblgt?nfeogur:’reezcon —@ Transition-event sequence
Sustainability Frequent Motif Mining | Frequent motifs
Characterization { el

Sustainability characterization

of frequent motifs

EHERGIGUIDE
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I Clustering

Individual vector:
Utilization across all chiller

units

Raw Data: Sequence of T

such vectors L T

Perform k-means clustering 3 R 5

2 ot o e 5

Use cluster labels to E | s a
. . . 2T £

encode multi-variate time 7 F

Serles Ihl?-5 l.:l I5 ‘1=0 1}5 20 K

Time Series-1
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Some Definitions

Event Sequence
<(E1,t1),(E2,t2),...,(EN ’tN)>

E; = Event type t, = Time of occurrence

<(A,l), (B,3),(D,4),(C,6),(A12),(EJ14),(B15),(D17),(C,20), (A,21)>
Episode

Ordered collection of events occurring together

(A>B—>C)

Episode occurrence
Events same ordering as episode in the data.

<(A,1), (B,3), (C,6), (A,18), (B,15), (C,17)>

Motits
Frequently occurring episodes @




Redescribing time series data

Symbol Sequence : dddbaceddddeb
Il

Pe rform ru n-length Event Sequence : -ii:d—kn 1), (b-a, 5), (a-c, 6), (e-d, 8),

encoding: (d-c, 12), (c-b, 13))

Note transitions from

one symbol to
another

R2

Higher level of
abstraction

R3

Transition events

;
?

RS

Sequence of cluster labels

(U ii LA DR
Sequence of transition events

WD



Level-wise (Apriori-based) motit mining

20

A:10

B:12 =

C:04

Level -1
Level -2

3 June 2013

AA:
AB:
BA:
BB:

05
10
09
05

BC: --
AC: --

ABA: 05
BAB: 06

ABC: - -

Level -3

Candidate generation
followed by counting



I Methodology Summary

Vector representation
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I Sustainability characterization ot Motits

22

Average motit COP (coefficient of performance)

Indicates cooling efficiency of a chiller unit
COP = IT Cooling Load

Power consumed

Frequency of oscillations of a motit
Impacts chiller lifespan

Normalized number of mean-crossings



Experimental Results

23

Data

From HP R&D data center in Bangalore
70,000 sq ft
2000 racks of IT equipments

Ensemble of five chiller units

3 air cooled chillers

2 water cooled chillers

480 hours of data

July 2 -7, Nov 27 - 30, Dec 16 - 26, 2008

22 motifs found in the data
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A Motif - Detailed Example (1/3)

Time Series

I I
GEo0 570 57 o0

8,8/8,1010,10,10,10,10,10,10,10,10,10,10,10,10,0,}3 4

U

Encoded seq: 11-8,6637 8-10,6641 10-13,6656 13-14,6657 14-12,6658 12-11,6660

[
<« » < <« » <« » <

4 15 1 1 2

Transition Motif: [ 11-8 , 8-10 , 10-13 , 13-14 , 14-12, 12-11 ]
Inter-transition gap constraint = 20 min @
/
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A Motif - Detailed Example (2/3)

/ ime Series

I I I I
S1a10 GEo0 570 SN0 G0

ymbol seq:| 11,11)11,8}8/8,10,10,10,10,10,10,10,10,10,10,10,10,10,13,13,14/12,12,11, 11,11

b~/

Encoded seq: 11-8,6698 8-10,6701 10-13,6714 13-14,6716 14-12,6717 12-11,6719

3 13 2 1 2

4

ansition Motif: [ 11-8 , 8-10 , 10-13 , 13-14 , 14-12, 12-11 ]
Inter-transition gap constraint = 20 min @
/
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A Motif - Detailed Example (3/3)

Time Series
| | |
SEAelN SEE=1N STa 01N

ymbol seq: 11,8}8/8,10,10,10,10,10,10,10,10,10,10,10,10,10,{0,]3JaJi2h12,j2,1n. 0,1

Encoded seq: 11-8,6758 8-10,6761 10-13,6775 13-14,6776 14-12,6777 12-11,6780

3 14 1 1 3

ansition Motif: [ 11-8 , 8-10 , 10-13 , 13-14 , 14-12, 12-11 ]
Inter-transition gap constraint = 20 min @
/
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Two Interesting Motifs

8 :
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C1, C2, C3 — Air cooled
C4, C5 — Water cooled

2000

Time (min) —

I
2500

Motif 8
Motif 5

Motif 8

Motif 5

COP

487

5.40

Units
operating

3 air-cooled

2 air-cooled, 1
water cooled




Potential Savings

Load (KW) | Most Efficient | Least Efficient | Potential Power Savings
Ave. | Std Motif Motif KW Yo
Group II | 2089 | 35 5 8 41 9.83%

Annual saving from operating in Motit 5 instead

of Motit 8
Cost savings = $40,000 (~10%)
Carbon footprint savings = 287,328 kg ot CO,

28



Summary

Data center chillers consume substantial power

Ensemble of chillers - Far’r of data center cooling
infrastructure — are challenging to operate energy
etticiently

Mine and characterize motits
Symbolic representation
Event encoding
Motit mining
Sustainability characterization

Demonstrated our approach on data from a
real data center — indicates signiticant
potential energy savings

29




The Net-Zero Energy Data Center

Implementation in Palo Alto

Data center
PV micro grid

i

Outside air

y Cooling
infrastructure
~ power demand

(_:hiller COP

oad (kW) )

—

Outside Air Temperature (°C)

Data center supply side @



Net-Zero Energy Methodology and Integration

Prediction ‘

PV Supply

3
Supply—§ide :
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&

IT Demand
Prediction

Planning

DC Operation Objectives:

IT Workload Planning
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Verification and Reporting

800 —Plan
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Measurement & 200
Verification o s
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Ref: Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, C. Hyser, "Renewable and Cooling Aware
Workload Management for Sustainable Data Centers", ACM SIGMETRICS/Performance, June 11-15 2012, London, UK.

T
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[Tnon-riical workload

cooling power
—B— renewable supply
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Execution
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Prediction: Summary

11 actual power
PV Supply Prediction N il
[{ P = 7”7 8 6
» Search for most “similar” days in the recent past =106
* Hourly generation estimated from corresponding hours of “similar” days S 04
“ 02
Ref: P. Chakraborty, M. Marwah, M. Arlitt, N. Ramakrishnan, Fine-grained Photovoltaic Output Prediction Using a Bayesian 0 . :
Ensemble, in Proceedings of the 26th Conference on Artificial Intelligence (AAAI'12), Toronto, Canada, July 2012 5 10 15 20
time (hour)
035F Outside Air Céoling Avallable Capécity
L] L] L] o 03‘
Cooling Capacity Prediction s
&025+
» End-to-End Energy Modeling $ 02
o
0.15¢
Ref: Breen, T.J. et. al. “From Chip to Cooling Tower Data Center Modeling: Validation of Multi-Scale Energy Management
Model”, Proceedings of Itherm, June 2012 0.1

5 10 15 20

Time (hour)
20 T T 3
= predicted workload

=== actual workload

IT Workload Prediction

—
o1
T

 Perform a periodicity analysis (e.g., Fast Fourier Transform)
» Use an auto-regressive model to predict workload from historical data

—
o
T

o
T

CPU Demand (number of CPUs)
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Fine grained PV Prediction using Bayesian Ensemble

Motivation

* Integration of renewable sources is an important goal of the smart grid effort

* PV output is variable and intermittent

in data centers

Problem addressed

Data

Predict PV output for the next day

Knowledge of future PV output enables demand-side management and “shaping”

Power(kW)
1 o o

PV Supply

12
Time(hour)

Historical PV output data for about 9 months from the HPL Palo Alto site

Weather data

(AAAI 2012)



Fine grained PV Prediction using Bayesian Ensemble

« Approach A /\ m

Extract daily profiles from training data

 Use ensemble of predictors | m ﬁgﬁa\
* Naive Bayes s il e

« K-NN

il leolel® Weather PV Table
2s ==
*  Motif based § 5 0 MR MRty o) eldl ]|
« Perform Bayesian model averaging
Naive Bayes
Predictr 5
* Results - ~ \% .
5 ¢ e ¢
N85 |8
Method Testing Error klg\lNdl_J;Zed We'_‘-mJ %i—ﬂ 2
i regictor @0 @
Per. Abs. | Per. RMS | Rel. Abs. T 7 i ‘mé .
Error Error Error ; & &
gg g i)
PreviousDay | 2054 | 20.65 2081 33 | . g
ARWeather 18.54 18.31 19.73 g; -
L ABABCAD..
Stagewise 12.77 12.68 15.66 E;‘ ‘ Slr;;[;1'; —_—
Ensemble2 10.04 10.01 10.01 '

S




Fine grained PV Prediction using Bayesian Ensemble

* Results

f%%@ﬁéa%éﬁﬁiﬁ % WEU .. éé%%%éﬁﬁ 1

g Overcast Partly Cloudy Rain g i

ééé@%@%@é i ?e% WWWWWW

1B192021 7 9101112131415 18192021 7 8 910111213 141516171819 20 21 Hour
Hour

Error by weather condition Actual versus predicted

(AAAI 2012) @



Planning: Supply-Side Aware IT Workload

Planning

Planning Flow

electricity renewable cooling energy IT goals
price supply capacity storage workload
efficiency & SLAs

A B

Workload Planning

l

A detailed workload scheduling and capacity allocation plan
. Workload scheduling plan

. IT resource and power capacity allocation

. Cooling micro-grid capacity allocation

power (KW)

Demand Shaping

T
I ciicl workoad

I critical workload L

Demand : Optlmal Net [ Tronertical worioad
1 Dnon—critical workload | 1 ZeroPlan - I cooing pover
- : demand 3 —E— rengwable supply

cooling power shaping, £ 0

0
3

204

02

12 i
6 12 18 24 fime (o)

time (hour)

Overall demand is “shaped” according to input constraints and
operation objectives

Satisfy critical workload resource requirements

Ref: Z. Liu, Y. Chen, C. Bash, A. Wierman, D. Gmach, Z. Wang, M. Marwah, C. Hyser, "Renewable and Cooling Aware Workload Management for Sustainable Data Centers", ACM

SIGMETRICS/Performance, June 11-15 2012, London, UK.

W



Power and Workload Visualization

hour: 0

cooling power

critical IT worklo
solar
supply

the non-critical IT
workload was
running 24 hours of

notrelated to
solarpower supply
and cooling power

Before optimization

Power Consumption . 1205
hour: 0 high

cooling power

non-critical IT workload

reschedule the non-critical
IT workload in the daytime
to use solar supply

34.41
highlyrelated to

solarpower supply low
and cooling power 17.21

b

Atter optimization




I Some other projects

Anomaly detection (SensorKDD 2010)

Energy Disaggregation (SDM 2011, AAAI 201 3)
Automating Life Cycle Assessment (IEEE Computer 2011)
Building Energy Management (BuildSys 2011)

38 3 June 2013




Anomalous Thermal Behavior Detection using PCA

— Example: Event (Anomaly) Detection Period of increased energy

consumption (17 % increase)

Raw Temperature Walues

3':' T T T T T T T T
T
—T2
O 25 4| —Ta
% T4
2 . T5
& 20| Switch turned on—» =
Normal energy consumption
15 | | | | | | | |
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: Hidden “ariables
10 T T T T T T T T -
—— Hid1
Hidz
2 5 |
=
=
[y
(1]
Network Switch = 0 7
_5 | | | 1 1 1 1 1
0 &0 100 180 200 2500 300 340 400 450

Start: 2009-09-28 16:44:34 End: 2009-09-28 23:58:34

/
39 ©2009 (SensorKDD 2010) w



Energy Disaggregation

5 —
4 -
. category

. baseload

% . Television
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| | | | I | | I I | I
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Proposed Variant ot Factorial HMM's (SDM 2011)

FHMM  Distribution  FHSMM 0.9-
Shape
>
O O . Model
008~
Additional > — CFHSMM
Features 8 RS = CFHMM
207- \U. e FHSMM
° ' . "o == FHMM
O 20, ~.
CFHMM CFHSMM e

o

| | | | I 1 1
2 3 4 5 6 1 8
The Number of Appliances

@
41 ©2009
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