Lecture 9 - Processes with Deadtime, IMC

- Processes with deadtime
- Model-reference control
- Deadtime compensation: Dahlin controller
- IMC
- Youla parametrization of all stabilizing controllers
- Nonlinear IMC
 - Dynamic inversion Lecture 13
 - Receding Horizon MPC Lecture 12

Processes with deadtime

• Examples: transport deadtime in mining, paper, oil, food

Processes with deadtime

• Example: resource allocation in computing

Control of process with deadtime

• PI control of a deadtime process PLANT: $P = z^{-5}$; PI CONTROLLER: $k_p = 0.3$, $k_1 = 0.2$ $P = e^{-sT_D}$ continuous time 0.8 0.6 $P = z^{-d}$ discrete time 0.4 0.2 0 10 15 5 20 25 0 Can we do better? DEADBEAT CONTROL $\frac{PC}{1+PC} = z^{-d}$ – Make 0.8 0.6 0.4 - Deadbeat controller 0.2 -d1 5 10 15 20 0 25

$$PC = \frac{z}{1 - z^{-d}} \Longrightarrow C = \frac{1}{1 - z^{-d}}$$

Control Engineering

u(t) = u(t - d) + e(t)

30

30

EE392m - Winter 2003

Model-reference control

- Deadbeat control has bad robustness, especially w.r.t. deadtime
- More general model-reference control approach

- make the closed-loop transfer function as desired

$$\frac{P(z)C(z)}{1+P(z)C(z)} = Q(z)$$

$$C(z) = \frac{1}{P(z)} \cdot \frac{Q(z)}{1-Q(z)}$$

Works if Q(z) includes a deadtime, at least as large as in P(z)

Dahlin's controller

- Eric Dahlin worked for IBM in San Jose (?) \bullet then for Measurex in Cupertino.
- Dahlin's controller, 1968 ${\bullet}$

$$P(z) = \frac{g(1-b)}{1-bz^{-1}} z^{-d}$$

- plant, generic first order response with deadtime
- $Q(z) = \frac{1 \alpha}{1 \alpha z^{-1}} z^{-d} \qquad \text{• reference model}$

$$C(z) = \frac{1 - bz^{-1}}{g(1 - b)} \cdot \frac{1 - \alpha}{1 - \alpha z^{-1} - (1 - \alpha)z^{-d}} \quad \bullet \text{ Dahlin's controller}$$

Single tuning parameter: α - tuned controller

Dahlin's controller

- Dahlin's controller is broadly used through paper industry in supervisory control loops Honeywell-Measurex, 60%.
- Direct use of the identified model parameters.

9-7

- continuous time *s*
- discrete time *z*

IMC and Youla parametrization

• Sensitivities

 $Q = \frac{C}{1 + CP_0} \bullet \text{ If } Q \text{ is stable, then } S, T, \text{ and the loop are stable}$ $\bullet \text{ If loop is stable, then } Q \text{ is stable}$

- Choosing various stable Q parameterizes all stabilizing controllers
- This is called Youla parameterization
- Youla parameterization is valid for unstable systems as well

Q-loopshaping

- Systematic controller design: select Q to achieve the tradeoff
- The approach used in modern advanced control design: H_2/H_{∞} , LMI, H_{∞} loopshaping
- *Q*-based loopshaping:

$$S = 1 - QP_0$$
 $S \ll 1 \Rightarrow Q \approx (P_0)^{-1}$ • in band

• Recall system inversion In

Q-loopshaping

- Loopshaping
 - $S = 1 QP_0$ $S \ll 1 \Rightarrow Q \approx (P_0)^{-1}$ in band $T = QP_0$ $T \ll 1 \Rightarrow QP_0 \ll 1$ • out of band
- Lambda-tuned IMC †

$$Q = FP_0^{\dagger}, \quad S = 1 - QP_0 \approx 1 - F$$

$$F = \frac{1}{(1 + \lambda s)^n}$$
Loop@aping

- *F* is called IMC filter, $F \approx T$, reference model for the output
- For minimum phase plant $Q = FP_0^{\dagger} = F(P_0)^{-1}, \quad T = F$

EE392m - Winter 2003

Control Engineering

IMC extensions

- Multivariable processes
- Nonlinear process IMC
- Dynamic inversion in flight control Lecture 13 ?
- Multivariable predictive control Lecture 12

Nonlinear process IMC

- Can be used for nonlinear processes
 - linear Q
 - nonlinear model P_0
 - linearized model L

Industrial applications of IMC

- Multivariable processes with complex dynamics
- Demonstrated and implemented in process control by academics and research groups in very large corporations.
- Not used commonly in process control (except Dahlin controller)
 - detailed analytical models are difficult to obtain
 - field support and maintenance
 - process changes, need to change the model
 - actuators/sensors off
 - add-on equipment

Dynamic inversion in flight control

Control Engineering

Dynamic inversion in flight control

- NASA JSC study for X-38
- Actuator allocation to get desired forces/moments
- Reference model (filter): vehicle handling and pilot 'feel'
- Formal robust design/analysis (μ-analysis etc)

Summary

- Dahlin controller is used in practice
 - easy to understand and apply
- IMC is not really used much
 - maintenance and support issues
- Youla parameterization is used as a basis of modern advanced control design methods.
 - Industrial use is very limited.
- Dynamic inversion is used for high performance control of air and space vehicles
 - this was presented for breadth, the basic concept is simple
 - need to know more of advanced control theory to apply in practice