Lecture 7 - SISO Loop Design

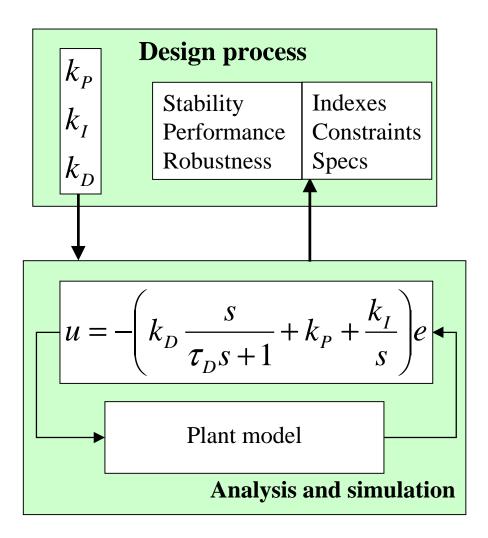
- Design approaches, given specs
- Loopshaping: in-band and out-of-band specs
- Design example
- Fundamental design limitations for the loop
 - Frequency domain limitations
 - Structural design limitations
 - Engineering design limitations

Modern control design

- Observable and controllable system
 - Can put poles anywhere
 - Can drive state anywhere
 - Can design 'optimal control'
- Issues
 - Large control
 - Error peaking in the transient
 - Noise amplification
 - Poor robustness, margins
 - Engineering trade off vs. a single optimality index

Feedback controller design

- Conflicting requirements
- Engineers look for a reasonable trade-off
 - Educated guess, trial and error controller parameter choice
 - Optimization, if the performance is really important
 - optimality parameters are used as tuning handles



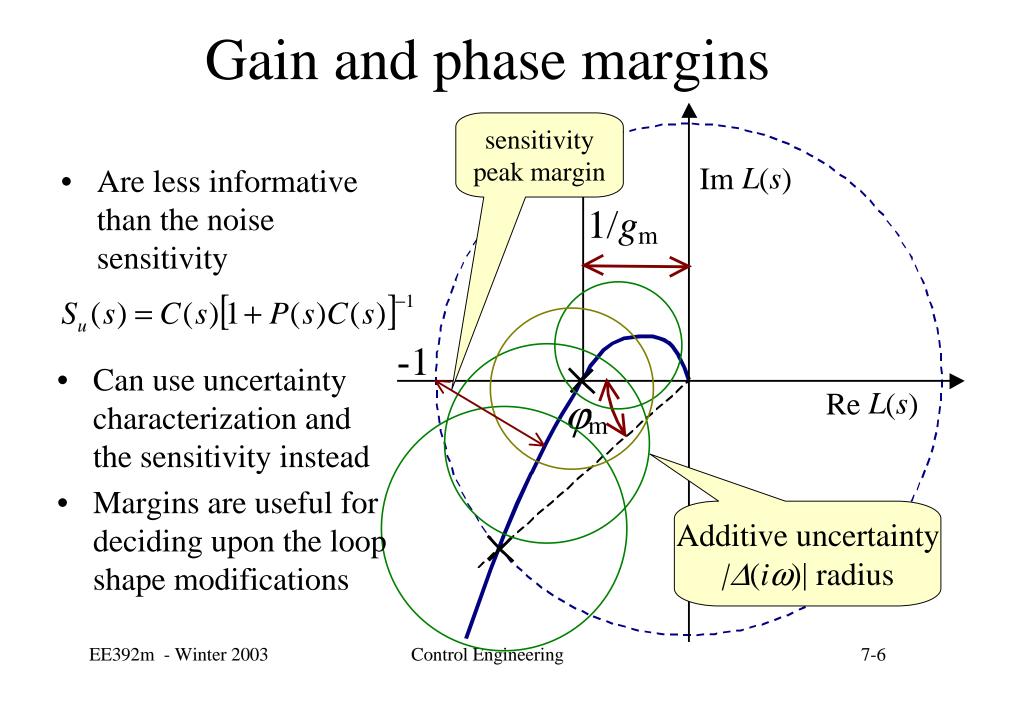
Loopshape requirements $L(i\omega) = P(i\omega)C(i\omega)$ Performance $S(i\omega) = [1 + L(i\omega)]^{-1}$

- Disturbance rejection and reference tracking
 - $|S(i\omega)| <<1$ for the disturbance d; $|P(i\omega)S(i\omega)| <<1$ for the load v
 - satisfied for $|L(i\omega)| >> 1$
- Noise rejection
 - $|T(i\omega)| = |S(i\omega)L(i\omega)| < 1$ is Ok unless $|1 + L(i\omega)|$ is small
- Limited control effort
 - $|C(i\omega) S(i\omega)| < 1$
 - works out with large $|C(i\omega)|$ for low frequency, where $|P(i\omega)| > 1$

Loopshape requirements

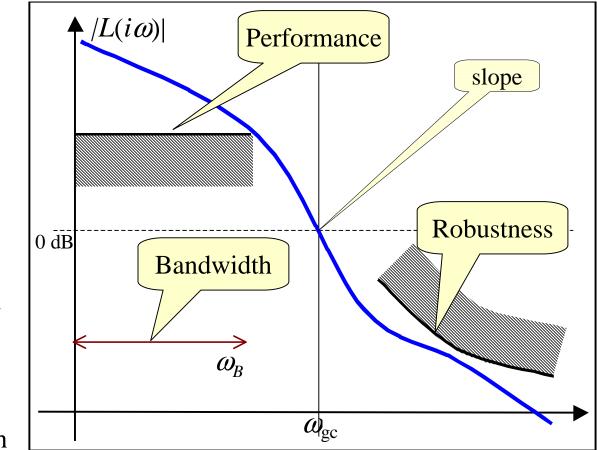
Robustness

- Multiplicative uncertainty
 - $|T(i\omega)| < 1/\delta(\omega)$, where $\delta(\omega)$ is the uncertainty magnitude
 - at high frequencies, relative uncertainty can be large, hence, $|T(i\omega)|$ must be kept small
 - must have $|L(i\omega)| <<1$ for high frequency, where $\delta(\omega)$ is large
- Additive uncertainty
 - $|C(i\omega) S(i\omega)| < 1/\delta(\omega)$, where $\delta(\omega)$ is the uncertainty magnitude
- Gain margin of 10-12db and phase margin of 45-50 deg
 - this corresponds to the relative uncertainty of the plant transfer function in the 60-80% range around the crossover



Loop Shape Requirements

- Low frequency:
 - high gain L= small S
- High frequency:
 - $\text{ small gain } L \\ = \text{ small } T \cdot \text{ large } \delta$
- Bandwidth
 - performance can be only achieved in a limited frequency band: $\omega \leq \omega_B$
 - $-\omega_B$ is the bandwidth



Fundamental tradeoff: performance vs. robustness

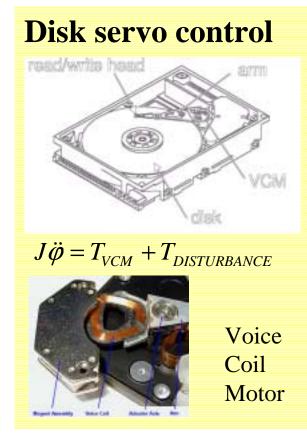
Loopshaping design

- Loop design
 - Use P,I, and D feedback to shape the loop gain
- Loop modification and bandwidth
 - Low-pass filter get rid of high-frequency stuff robustness
 - Notch filter get rid of oscillatory stuff robustness
 - Lead-lag to improve phase around the crossover bandwidth
 - P+D in the PID together have a lead-lag effect
- Need to maintain stability while shaping the magnitude of the loop gain
- Formal design tools H_2 , H_∞ , LMI, H_∞ loopshaping
 - cannot go past the fundamental limitations

Example - disk drive servo

- The problem from HW Assignment 2
 - data in diskPID.m, diskdata.mat
- Design model: $\Delta P(s)$ is an uncertainty $P(s) = \frac{g_0}{s^2} + \Delta P(s)$
- Analysis model: description for $\Delta P(s)$
- Design approach: PID control based on the simplified model

$$C(s) = k_P + \frac{k_I}{s} + k_D \frac{s}{\tau_D s + 1}$$



Disk drive servo controller

- Start from designing a PD controller
 - poles, characteristic equation

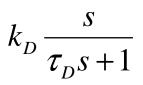
$$1 + C(s)P(s) = 0 \Longrightarrow \left(k_P + sk_D\right) \cdot \frac{g_0}{s^2} + 1 = 0$$
$$s^2 + sg_0k_D + g_0k_P = 0$$

• Critically damped system

$$k_D = 2w_0 / g_0;$$
 $k_P = w_0^2 / g_0$

where frequency w_0 is the closed-loop bandwidth

• In the derivative term make dynamics faster than w_0 . Select $\tau_D = 0.25/w_0$



Disk drive servo

• Step up from PD to PID control

$$1 + \left(k_{P} + sk_{D} + \frac{1}{s}k_{I}\right) \cdot \frac{g_{0}}{s^{2}} = 0$$

$$s^{3} + s^{2}g_{0}k_{D} + sg_{0}k_{P} + g_{0}k_{I} = 0$$

- Keep the system close to the critically damped, add integrator term to correct the steady state error, keep the scaling
 k_P = w₀² / g₀; k_D = aw₀ / g₀; k_I = bw₀³ / g₀ τ_D = c / w₀ where a, b, and c are the tuning parameters
- Initial guess: $w_0 = 2000; a=2; b=0.1; c=0.25$
- Tune *a*, *b*, *c* and w_0 by watching performance and robustness

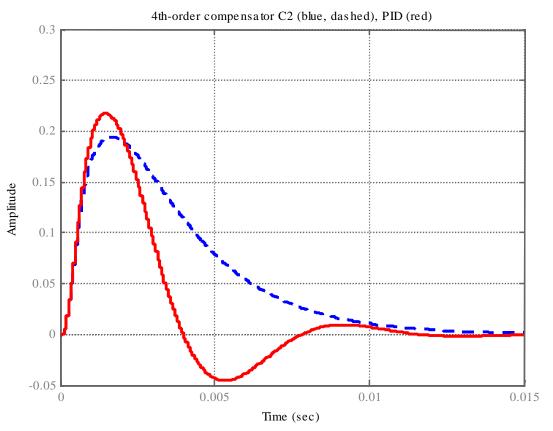
Disk drive - controller tuning

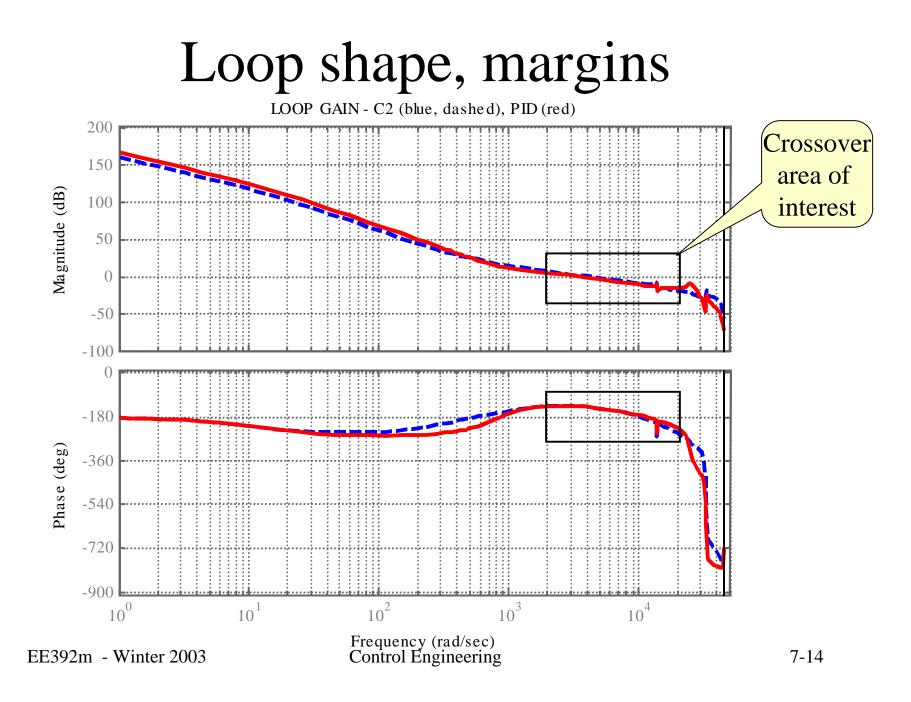
- Tune *a*, *b*, w_0 , and τ_D by trial and error
- Find a trade off taking into the account
 - Closed loop step response
 - Loop gain performance
 - Robustness sensitivity
 - Gain and phase margins
- Try to match the characteristics of C2 controller (demo)
- The final tuned values:

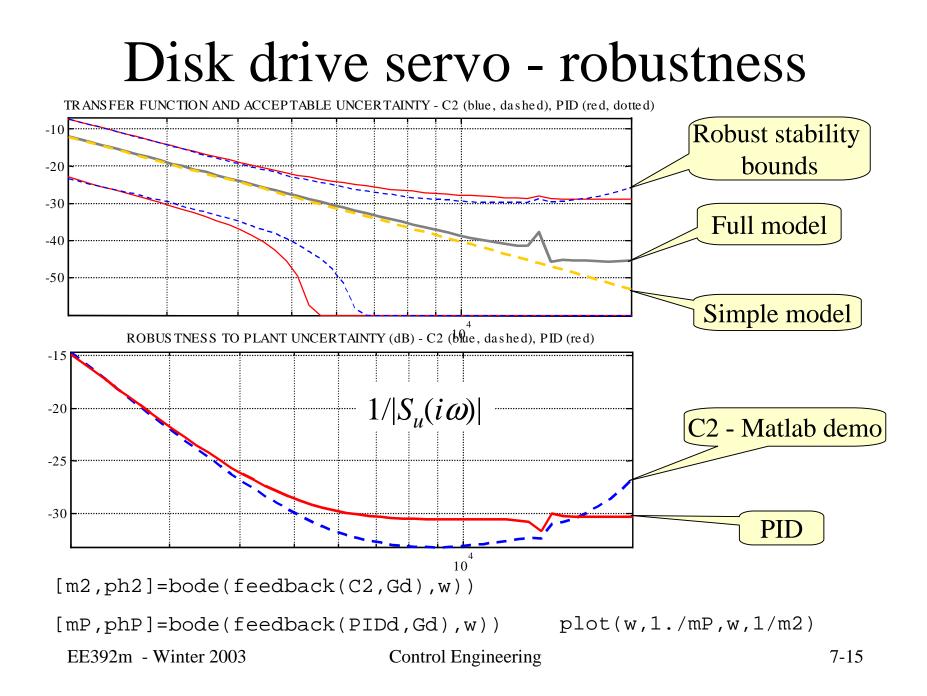
 $w_0 = 1700; a = 1.5; b = 0.5; c = 0.2$

Disk servo - controller comparison

- PID is compared against a reference design
- Reference design: 4-th order controller: leadlag + notch filter
 - Matlab diskdemo
 - Data in diskPID.m,
 diskdata.mat







Fundamental design limitations

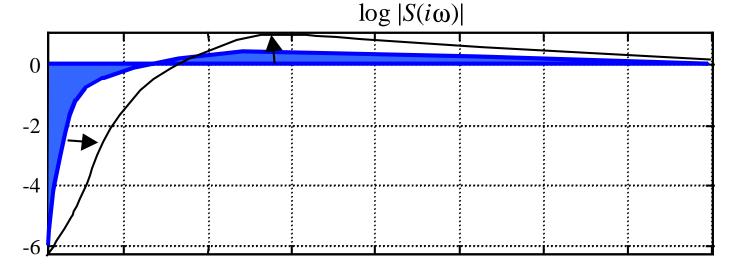
- If we do not have a reference design how do we know if we are doing well. May be there is a much better controller?
- Cannot get around the fundamental design limitations
 - frequency domain limitations on the loop shape
 - system structure limitations
 - engineering design limitations

Frequency domain limitation

 $S(i\omega) + T(\underline{i\omega}) = 1$ Robustness: $|T(i\omega)| <<1$

• Bode's integral constraint - waterbed effect

 $\int_{0}^{\infty} \log |S(i\omega)| d\omega = 0 \quad \text{(for most real-life stable system, or worse for the rest)}$



EE392m - Winter 2003

Structural design limitations

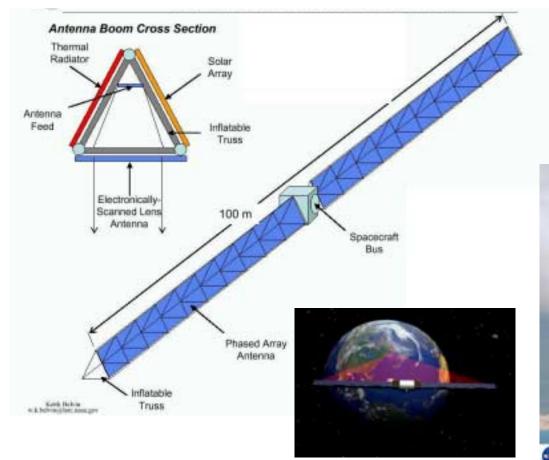
- Delays and non-minimum phase (r.h.s. zeros)
 - cannot make the response faster than delay, set bandwidth smaller
- Unstable dynamics
 - makes Bode's integral constraint worse
 - re-design system to make it stable or use advanced control design
- Flexible dynamics
 - cannot go faster than the oscillation frequency
 - practical approach:
 - filter out and use low-bandwidth control (wait till it settles)
 - use input shaping feedforward

Unstable dynamics

- Very advanced applications
 - need advanced feedback control design

EE392m - Winter 2003

Flexible dynamics



- Very advanced applications
 - really need control of 1-3 flexible modes

Pathfoder-Plus flight in Hawaii

EE392m - Winter 2003

Engineering design limitations

- Sensors
 - noise have to reduce $|T(i\omega)|$ reduced performance
 - quantization same effect as noise
 - bandwidth (estimators) cannot make the loop faster
- Actuators
 - range/saturation limit the load sensitivity $|C(i\omega) S(i\omega)|$
 - actuator bandwidth cannot make the loop faster
 - actuation increment sticktion, quantization effect of a load variation
 - other control handles
- Modeling errors
 - have to increase robustness, decrease performance
- Computing, sampling time
 - Nyquist sampling frequency limits the bandwidth

EE392m - Winter 2003