Lecture 6 - SISO Loop Analysis

SISO = Single Input Single Output

Analysis:
o Stahility
e Performance
e Robustness
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ODE stability

o Lyapunov’s stability theory - nonlinear
systems
— stability definition
— first (direct) method
* exponential convergence

— second method: Lyapunov function
« generaization of energy dissipation

Poiiaiie 1 o Lyapunov’s exponent

A — dominant exponent of the
convergence

— for anonlinear system

— for alinear system defined

407= by the poles

men - HUYTA
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Stability: poles

X = Ax + Bu y:H(S)EJ
y =Cx+Du| H(s)=C(Ils-A'B+D

e Characteristic values = transfer
function poles

— |.h.p. for continuous time

— unit circle for sampled time
e |/O model vs. internal dynamics

H(é): N(s) __ g, ./+\+Ag g,

D(S) S— P | S— Py
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Stability: closed loop

u—{Plant : P(s) »y Y=P(s)u
u=-C(s)gg e=y-y,

PID controller : C(s) i [ ]
e=[1+P(s)C(s)| "y
I(p'|'k|l+kD : € y ) S(s) .
S IS+l

Yd
e Thetransfer function poles arethe zeros of
1+ P(s)C(9)
o Watch for pole-zero cancellations!
* Poles define the closed-loop dynamics (including stability)
« Algebraic problem, easier than state space sSim
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Stability

For linear system polesdescribe stability
... admost, except the critical stability

For nonlinear systems
— linearize around the equilibrium
— might have to look at the stability theory - Lyapunov
Orbital stability:
— trgectory convergesto the desired

— the state does not - the timing is off
» Spacecraft
 FMS, aircraft arrival
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Performance

* Need to describe and analyze
performance so that we can
design systems and tune
controllers

 Thereareusualy many
conflicting requirements

e Engineerslook for a
reasonabl e trade-of f

Optimizer

Ky, Ko, K, Performance

T

S K
u=-Kkg +K, +— |ew
IS+l S
| Plant model
sim
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Performance: Example

» Selecting optimal b in the b Optimi;;mmance
Watt’s governor - HW
Assignment 1 Y T

Plant model, given b

sim

Linkage from . 215 \
Flyball motion darnpl ng b 2 1 \
—~ S\

2,05 \ Performance index —

2 \ Inatransent vsb —
1.95 \

\

adjustment ‘\' \“ / 5 = nw,d 1.9 \
Drive ‘\l Bl ‘\l ﬁ 18 \

/|

7

from «

engine / r '/ 18 \\ /

1.75

Flywheel
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Performance - poles

o Steady state error: study transfer functionsat s=0.

o Step/pulse response convergence, dominant pole

a=mi n{Re pj} o

// C+ Ae aﬁ)mi nant exponent |

7
/

0

« Caution! Fast response (poles far to the left) leads to peaking

\

\
S

" fast response l

 S~—

AN

| dow response !
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Performance - step response

+ Step response shape ¢
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Performance - quadratic index

* Quadratic performance /\
— response, mfrequency domain / T
J= j\y(t) Ys (D) dt-—ﬂe('w)\ da= / v
t=0

—“S(m))yd (iw) da)——ﬂS(l 60)\ = oo’ 59 = [+ PeC(S]”

STEP
 If y4(t) Isazero mean random process with the

spectral power Q (Iw)
7 _ 2 .| 1 R P
J= E[t _:“O\y(t) Ya () dtj = [[S(i )" Q(icw) dew
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Transfer functions in control loop

disturbance (
feedf d Pant *
orward v—p— P(3) DT y output
noise I AN u control
Controller x-
C(s) e* e eror

reference vy,

e=3(s)d - S(s)y, +T(s)n+ S (s)v
y=3(s)d +T(s)y, +T(s)n+ S, (s)v
u=-§,(s)d +§,(s)yys + S (s)n+T(s)v
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Transfer functions in control loop

e=y-y,+n e=3(s)d —3(g)y, +T(s)n+ S (s)v
y=P(g)Uu+Vv)+de=> y=5(s)d +T(s)y, +T(s)n+S,(s)v
u=-C(s)e u=-5,(s)d+S,(s)y, +S,(s)n+T(s)v

Sensitivity S(s) =[1+ P(s)C(s)|™
Complementary sengitivity T(s) = [1+ P(s)C(s)| " P(s)C(s)
Noise sensitivity S,(s) = [1+ P(s)C(s)] C(s)
Load sensitivity S (s) =[L+ P(s)C(s)] " P(s)
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Sengitivities

disturbance Plant

P(s)
Controller

reference |  C(S)

disturbance d

outpu¥ Feedforward

Yd

y =3(s)d +T ()Y,

error Y4

Plant
P(s)

r F(s)
e

reference

y=d+F(s)P(s)y;

y
outpuit

error

S(iw) =

1+L(iw)

L(s) = P(s)C(s)

* Feedback sensitivity

— |S(iw)|<<1 for
— |IS(lw|=1 for
— can bebad for
EE392m - Winter 2003

L (i)
L (i)
L (i)

Se(lw) =1

» Feedforward sensitivity

>>]
<<1

= 1 - ringing, instability

Control Engineering

— good for any frequency
— never unstable
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Sensitivity requirements

S(a)=—
e=S(s)d - S(5)y, +T(Sn+S, (v 1+ Pllw)C(iw)
_ N P(iw)
y=S(s)d +T(s)y, +T(s)n+ S, (s)v S,(lw) = T+ PGw)C(®)
u=-3,(9)d +,(9) Yy, + S (sn+T(s)V :
Sw) =)

1+ P(iw)C(iw)

Disturbance regjection and reference tracking

— |S(ia)|<<1 for thedisturbanced ; |S(ic)|<<1 for the input ‘noise’ v
Limited control effort

— |S,(iw)|<<1 conflicts with disturbance rejection where |P(i c)|<1
Noise rejection

— [T (lw)|<<1 for the noise n, conflicts with disturbance reection
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Robustnhess

e Ok, we have a controller that works for anominal mode.

 Why would it ever would work for real system?

— Will know for sure only when wetry - V&V - ssmilar to debugging
process in software
e (Can check that controller works for arange of different
models and hope that the real system is covered by this range

— Thisis called robustness analysis, robust design
— Was an implicit part of the classical control design - Nyquist, Bode
— Multivariable robust control - Honeywell: G.Stein, G.Hartmann, ‘81
— Doyle, Zames, Glover - robust control theory
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Control loop analysis

u(t) Plant vO V= qu
[Feedba‘*j 1=k (y—yg) ) YT Y =0

controller

e Why control might work if the process differs from the model?

o Key factors
— modeling error (uncertainty) characterization
— time scale (bandwidth) of the control loop

Step response for
the design mode!:

y(t)=gu(t)

Uncertainty

4>A

> Plant %

u(t)

-~/ | Actual step response

\ Feedback
AN controller

Modeling error
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Robusthess - Small gain theorem

e Nonlinear uncertainty!

e QOperator gain
|Gul < |G| il

— G can beanonlinear operator

e L,norm

2 5 1 ¢~,. 2
uf = [u* ()t = [T ) de

A

P

G

1.

|G| g <1

(Open-loop stability assumed)

G.Zames

y(t)

The loop Is guaranteed stable if

Desoer and Vidyasagar, Feedback
Systems: Input-Output Properties, 1975

* L,gan of alinear operator
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Robustness

e Multiplicative uncertainty

e Additive uncertainty

e L y(t)

|[|A(| w)| <1

—» A > A
u(t) 5 P P31 y(t) r P(s) [> :
C(s) « uts C(s) «
S, T(9
Condition of robust stability Condition of robust stability
C(lw) [lﬂ(l )‘ <1 P(lw)C(iw)
1+ Plw)C(lw)| —— H H 1+ P(lw)C(lw) X
Isi| 7]
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Nyquist stability criterion

=1
u(t) ”g C\5/(_3) 1’ y()

e Homotopy “Proof”

— G(9) Is stable, hence the loop is stable

for y=0. Increase y to 1. The instabil

cannot occur unless yG(iw)+1=0 for

someO<y< 1.
— |G(iwg) <1 is asufficient condition

o Subtleties: r.n.p. poles and zeros

A Im G(io)
Ultimate point
| B »
4 A 5 Re Glim)
i

] {0
Ity

Compare against

— Formulation and real proof using the
agrument principle, encirclements of -1

— stable - unstable - stableas0-y

-1
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Galn and phase margins

v =g+ P(s) v
g _ =1 f
»TC(S) j‘» y [c(s) ]| P(3)

Y .-

Loop gain /
L(s) = P(s)C(9) 5 !

Nyquist plot for L \
— at high frequency ‘L(i a))\ <1 \
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Galn and phase margins

e Bode plots gain phase
crossover crossover

gain

10 | | — IIII10 a).|.80
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Advanced Control

e Observable and controllable system
— Can put poles anywhere
— Candrive state anywhere
e Why cannot we just do this?
— Large control
— Error peaking
— Poor robustness, margins
e Observability and controllability = matrix rank
» Accuracy of solution is defined by condition number
 Anaysisof thislectureisvalid for any LTI contral,
Including advanced
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