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Lecture 6 - SISO Loop Analysis

SISO = Single Input Single Output

Analysis:
• Stability
• Performance
• Robustness
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ODE stability
• Lyapunov’s stability theory - nonlinear

systems
– stability definition
– first (direct) method

• exponential convergence
– second method: Lyapunov function

• generalization of energy dissipation
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• Lyapunov’s exponent
– dominant exponent of the

convergence
– for a nonlinear system
– for a linear system defined

by the poles
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Stability: poles

• Characteristic values = transfer
function poles
– l.h.p. for continuous time
– unit circle for sampled time

• I/O model vs. internal dynamics
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Stability: closed loop

• The transfer function poles are the  zeros of

• Watch for pole-zero cancellations!
• Poles define the closed-loop dynamics (including stability)
• Algebraic problem, easier than state space sim
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Stability
• For linear system poles describe stability
• … almost, except the critical stability
• For nonlinear systems

– linearize around the equilibrium
– might have to look at the stability theory - Lyapunov

• Orbital stability:
– trajectory converges to the desired
– the state does not - the timing is off

• spacecraft
• FMS, aircraft arrival
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Performance

• Need to describe and analyze
performance so that we can
design systems and tune
controllers

• There are usually many
conflicting requirements

• Engineers look for a
reasonable trade-off
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Performance: Example

• Selecting optimal b in the
Watt’s governor - HW
Assignment 1

sim

Plant model, given b

Optimizer
b Performance
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Performance - poles
• Steady state error: study transfer functions at  s=0.
• Step/pulse response convergence, dominant pole

• Caution! Fast response (poles far to the left) leads to peaking
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Performance - step response
• Step response shape characterization:

– overshoot

– undershoot

– settling time

– rise time

0

steady state error
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Performance - quadratic index

• Quadratic performance
– response, in frequency domain
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• If yd(t) is a zero mean random process with the
spectral power Q (iω)
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Transfer functions in control loop
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Transfer functions in control loop

Sensitivity

Complementary sensitivity

Noise sensitivity

Load sensitivity
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Sensitivities

• Feedback sensitivity
– |S (iω)|<<1  for |L (iω) |>>1
– |S (iω)|≈1    for |L (iω) |<<1
– can be bad  for |L (iω) | ≈ 1 - ringing, instability
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• Feedforward sensitivity
– good for any frequency
– never unstable
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Sensitivity requirements

• Disturbance rejection and reference tracking
– |S (iω)|<<1  for the disturbance d ;  |Sy(iω)|<<1  for the input ‘noise’ v

• Limited control effort
– |Su(iω)|<<1  conflicts with disturbance rejection where |P(iω)|<1

• Noise rejection
– |T (iω)|<<1  for the noise n, conflicts with disturbance rejection
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Robustness

• Ok, we have a controller that works for a nominal model.
• Why would it ever would work for real system?

– Will know for sure only when we try - V&V - similar to debugging
process in software

• Can check that controller works for a range of different
models and hope that the real system is covered by this range
– This is called robustness analysis, robust design
– Was an implicit part of the classical control design - Nyquist, Bode
– Multivariable robust control - Honeywell: G.Stein, G.Hartmann, ‘81
– Doyle, Zames, Glover - robust control theory
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Control loop analysis

• Why control might work if the process differs from the model?
• Key factors

– modeling error (uncertainty) characterization
– time scale (bandwidth) of the control loop
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Robustness - Small gain theorem
• Nonlinear uncertainty!

• Operator gain

– G can be a nonlinear operator

• L2 norm

• L2 gain of a linear operator

 u(t) G y(t)

∆∆∆∆
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G.Zames
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Robustness
• Additive uncertainty
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Nyquist stability criterion

• Homotopy “Proof”
– G(s) is stable, hence the loop is stable

for γ=0. Increase γ to 1. The instability
cannot occur unless γG(iw)+1=0 for
some 0 ≤ γ ≤ 1.

– |G(iω180)|<1 is a sufficient condition

• Subtleties: r.h.p. poles and zeros
– Formulation and real proof using the

agrument principle, encirclements of -1
– stable → unstable → stable as 0→γ→1

 u(t) G(s) y(t)

γ=1

Compare against 
Small Gain Theorem:

-
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Gain and phase margins

• Loop gain

• Nyquist plot for L
– at high frequency
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Gain and phase margins
• Bode plots
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Advanced Control
• Observable and controllable system

– Can put poles anywhere
– Can drive state anywhere

• Why cannot we just do this?
– Large control
– Error peaking
– Poor robustness, margins

• Observability and controllability  =  matrix rank
• Accuracy of solution is defined by condition number

• Analysis of this lecture is valid for any LTI control,
including advanced


