Lecture 6 - SISO Loop Analysis

SISO = Single Input Single Output

Analysis:

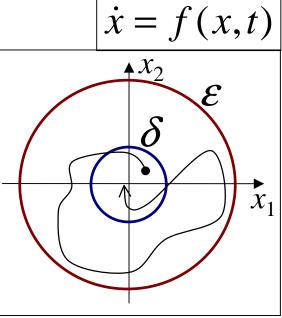
- Stability
- Performance
- Robustness

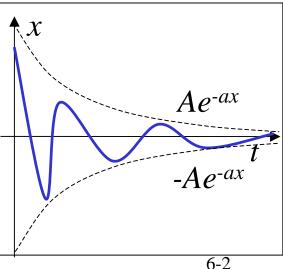
ODE stability

- Lyapunov's stability theory nonlinear systems
 - stability definition
 - first (direct) method
 - exponential convergence
 - second method: Lyapunov function
 - generalization of energy dissipation

Lyapunov's exponent

- dominant exponent of the convergence
- for a nonlinear system
- for a linear system defined by the poles





EE392m - Winter 2003

Stability: poles

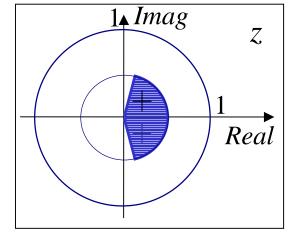
 $\dot{x} = Ax + Bu$ $y = H(s) \cdot u$

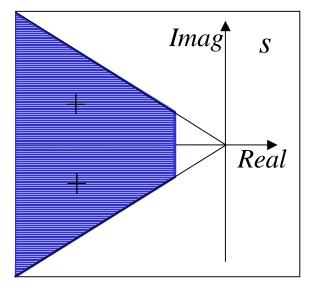
$$y = Cx + Du \qquad H(s) = C(Is - A)^{-1}B + D$$

- Characteristic values = transfer function poles
 - l.h.p. for continuous time
 - unit circle for sampled time

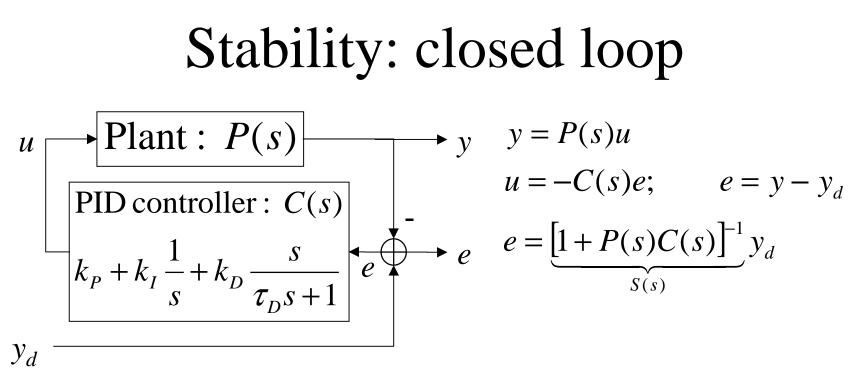
• I/O model vs. internal dynamics

$$H(s) = \frac{N(s)}{D(s)} = \frac{g_1}{s - p_1} + \dots + \frac{g_n}{s - p_n} + g_0$$





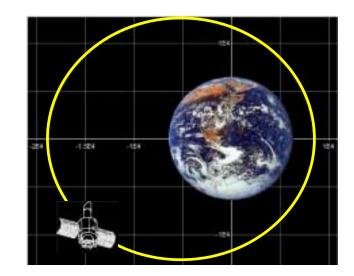
EE392m - Winter 2003



- The transfer function poles are the zeros of 1 + P(s)C(s)
- Watch for pole-zero cancellations!
- Poles define the closed-loop dynamics (including stability)
- Algebraic problem, easier than state space sim

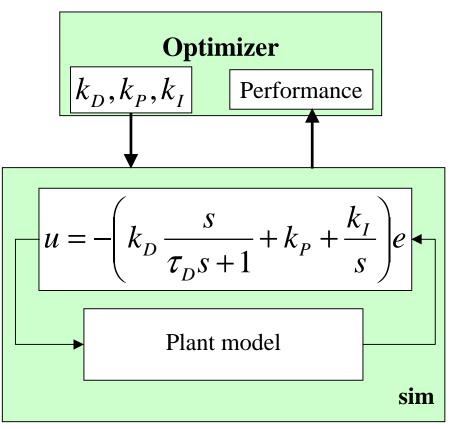
Stability

- For linear system poles describe stability
- ... almost, except the critical stability
- For nonlinear systems
 - linearize around the equilibrium
 - might have to look at the stability theory Lyapunov
- Orbital stability:
 - trajectory converges to the desired
 - the state does not the timing is off
 - spacecraft
 - FMS, aircraft arrival

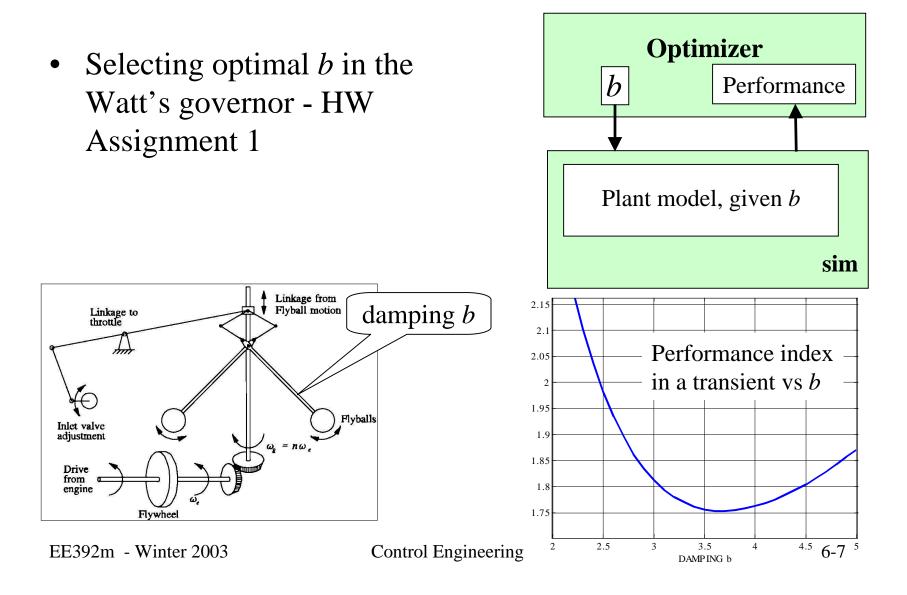


Performance

- Need to describe and analyze performance so that we can design systems and tune controllers
- There are usually many conflicting requirements
- Engineers look for a reasonable trade-off

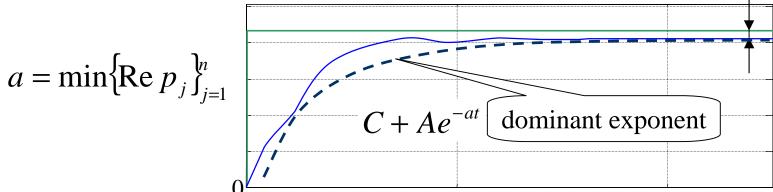


Performance: Example

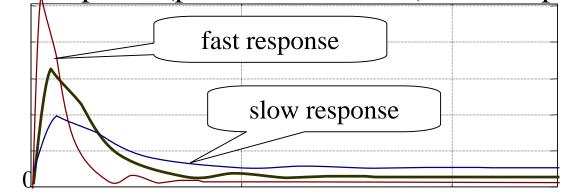


Performance - poles

- Steady state error: study transfer functions at s=0.
- Step/pulse response convergence, dominant pole



• Caution! Fast_response (poles far to the left) leads to peaking



EE392m - Winter 2003

Performance - step response

• Step response shape characterization:



Performance - quadratic index

• Quadratic performance
- response, in frequency domain

$$J = \int_{t=0}^{\infty} |y(t) - y_d(t)|^2 dt = \frac{1}{2\pi} \int_{\infty}^{\infty} |\tilde{e}(i\omega)|^2 d\omega = \frac{1}{2\pi} \int |S(i\omega)|^2 \frac{1}{\omega^2} d\omega$$

$$\frac{1}{2\pi} \int |S(i\omega)\tilde{y}_d(i\omega)|^2 d\omega = \frac{1}{2\pi} \int |S(i\omega)|^2 \frac{1}{\omega^2} d\omega$$

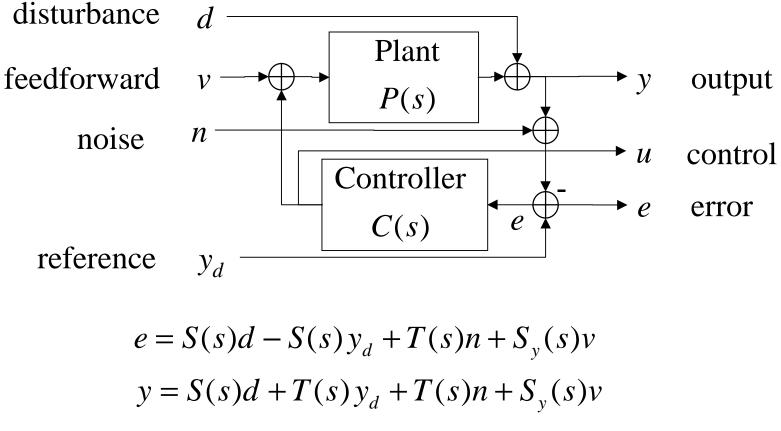
$$S(s) = [1 + P(s)C(s)]^{-1}$$

• If $y_d(t)$ is a zero mean random process with the spectral power $Q(i\omega)$

$$J = E\left(\int_{t=0}^{\infty} |y(t) - y_d(t)|^2 dt\right) = \frac{1}{2\pi} \int |S(i\omega)|^2 Q(i\omega) d\omega$$

EE392m - Winter 2003

Transfer functions in control loop



$$u = -S_u(s)d + S_u(s)y_d + S_u(s)n + T(s)v$$

EE392m - Winter 2003

Transfer functions in control loop

$$e = y - y_d + n$$

$$y = P(s)(u + v) + d \implies y = S(s)d - S(s)y_d + T(s)n + S_y(s)v$$

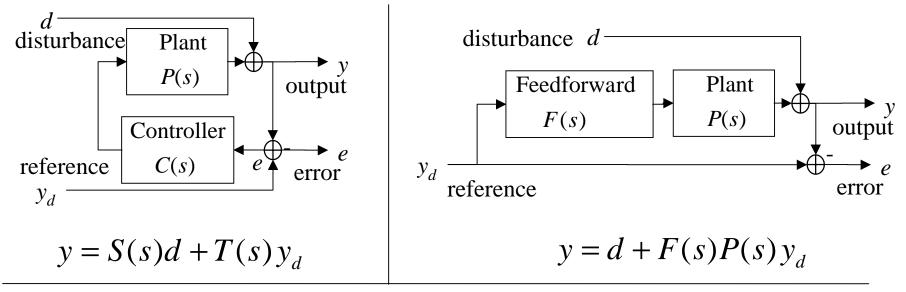
$$y = S(s)d + T(s)y_d + T(s)n + S_y(s)v$$

$$u = -C(s)e \qquad u = -S_u(s)d + S_u(s)y_d + S_u(s)n + T(s)v$$

Sensitivity $S(s) = [1 + P(s)C(s)]^{-1}$ Complementary sensitivity $T(s) = [1 + P(s)C(s)]^{-1}P(s)C(s)$ Noise sensitivity $S_u(s) = [1 + P(s)C(s)]^{-1}C(s)$ Load sensitivity $S_y(s) = [1 + P(s)C(s)]^{-1}P(s)$

EE392m - Winter 2003

Sensitivities



$$S(i\omega) = \frac{1}{1 + L(i\omega)}, \qquad L(s) = P(s)C(s)$$

- Feedback sensitivity
 - $|S(i\omega)| <<1$ for $|L(i\omega)| >>1$
 - $|S(i\omega)| \approx 1$ for $|L(i\omega)| \ll 1$
 - can be bad for $|L(i\omega)| \approx 1$ ringing, instability

EE392m - Winter 2003

$$S_{FF}(i\omega) = 1$$

- Feedforward sensitivity
 - good for any frequency
 - never unstable

Sensitivity requirements

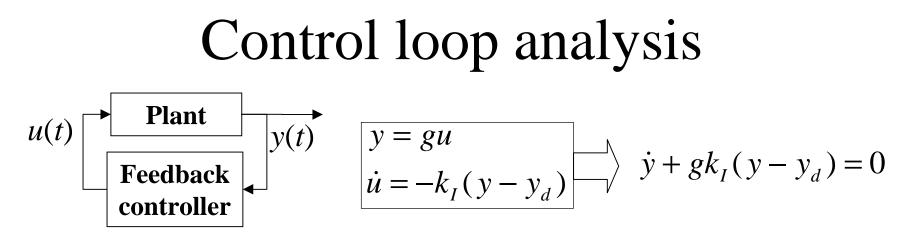
 $e = S(s)d - S(s)y_d + T(s)n + S_y(s)v$ $y = S(s)d + T(s)y_d + T(s)n + S_y(s)v$ $u = -S_u(s)d + S_u(s)y_d + S_u(s)n + T(s)v$

$$S(i\omega) = \frac{1}{1 + P(i\omega)C(i\omega)}$$
$$S_{y}(i\omega) = \frac{P(i\omega)}{1 + P(i\omega)C(i\omega)}$$
$$S_{u}(i\omega) = \frac{C(i\omega)}{1 + P(i\omega)C(i\omega)}$$

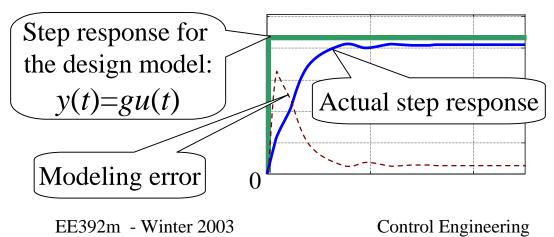
- Disturbance rejection and reference tracking
 - $|S(i\omega)| <<1$ for the disturbance d; $|S_v(i\omega)| <<1$ for the input 'noise' v
- Limited control effort
 - $|S_u(i\omega)| << 1$ conflicts with disturbance rejection where $|P(i\omega)| < 1$
- Noise rejection
 - $|T(i\omega)| << 1$ for the noise *n*, conflicts with disturbance rejection

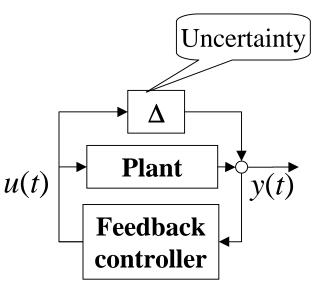
Robustness

- Ok, we have a controller that works for a *nominal* model.
- Why would it ever would work for *real system*?
 - Will know for sure only when we try V&V similar to debugging process in software
- Can check that controller works for a *range* of different models and hope that the real system is covered by this range
 - This is called robustness analysis, robust design
 - Was an implicit part of the classical control design Nyquist, Bode
 - Multivariable robust control Honeywell: G.Stein, G.Hartmann, '81
 - Doyle, Zames, Glover robust control theory



- Why control might work if the process differs from the model?
- Key factors
 - modeling error (uncertainty) characterization
 - time scale (bandwidth) of the control loop



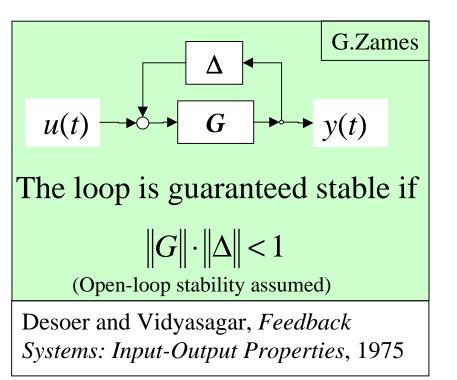


6-16

Robustness - Small gain theorem

- Nonlinear uncertainty!
- Operator gain $||Gu|| \le ||G|| \cdot ||u||$
 - G can be a nonlinear operator
- L_2 norm

$$\left\|u\right\|^{2} = \int u^{2}(t)dt = \frac{1}{2\pi} \int \left|\widetilde{u}(i\omega)\right|^{2} d\omega$$

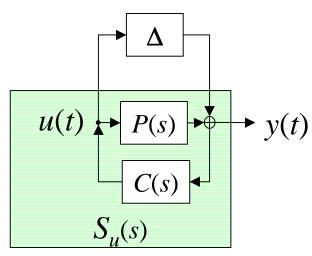


• L_2 gain of a linear operator $\|Gu\|^2 = \frac{1}{2\pi} \int |G(i\omega)\widetilde{u}(i\omega)|^2 d\omega \leq \sup_{\|G\|^2} \left(\frac{|G(i\omega)|^2}{2\pi} \int |\widetilde{u}(i\omega)|^2 d\omega \right)$

EE392m - Winter 2003

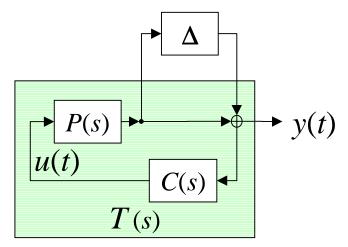
Robustness

• Additive uncertainty



Condition of robust stability $\left| \frac{C(i\omega)}{1 + P(i\omega)C(i\omega)} \right| \cdot \left| \Delta(i\omega) \right| < 1$ $\|S_u\|$

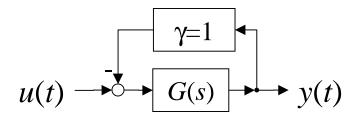
• Multiplicative uncertainty



Condition of robust stability $\frac{\left|\frac{P(i\omega)C(i\omega)}{1+P(i\omega)C(i\omega)}\right| \cdot \left|\Delta(i\omega)\right| < 1}{\|\Delta\|}$

EE392m - Winter 2003

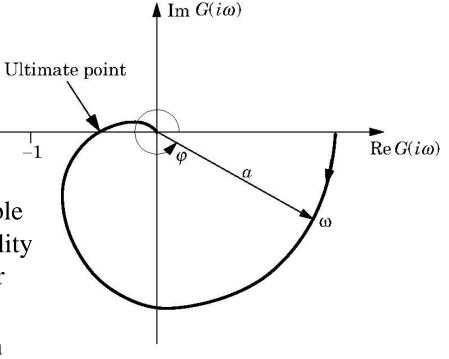
Nyquist stability criterion



- Homotopy "Proof"
 - G(s) is stable, hence the loop is stable for $\gamma=0$. Increase γ to 1. The instability cannot occur unless $\gamma G(iw)+1=0$ for some $0 \le \gamma \le 1$.
 - $|G(i\omega_{180})| < 1$ is a *sufficient* condition
- Subtleties: r.h.p. poles and zeros
 - Formulation and real proof using the agrument principle, encirclements of -1
 - stable \rightarrow unstable \rightarrow stable as $0 \rightarrow \gamma \rightarrow 1$

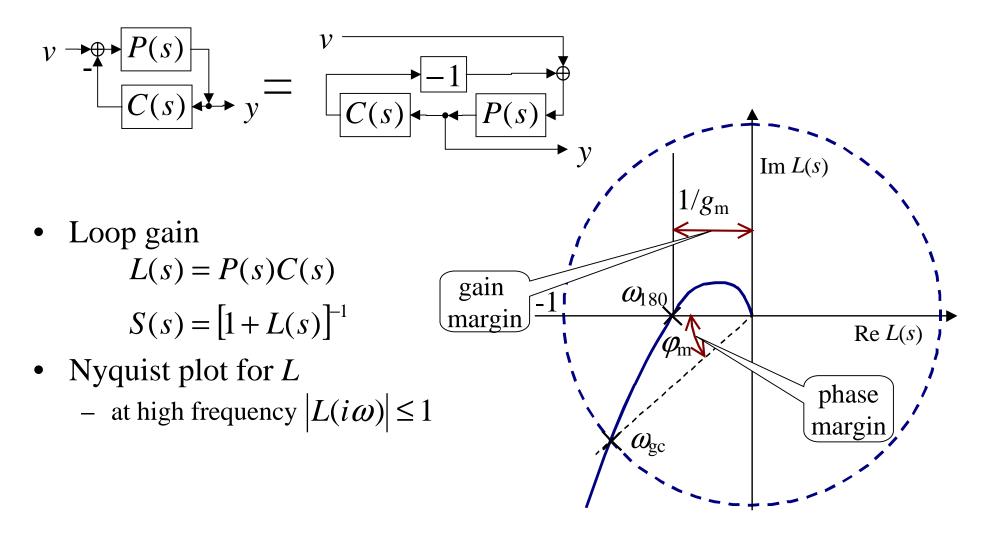
EE392m - Winter 2003

Control Engineering

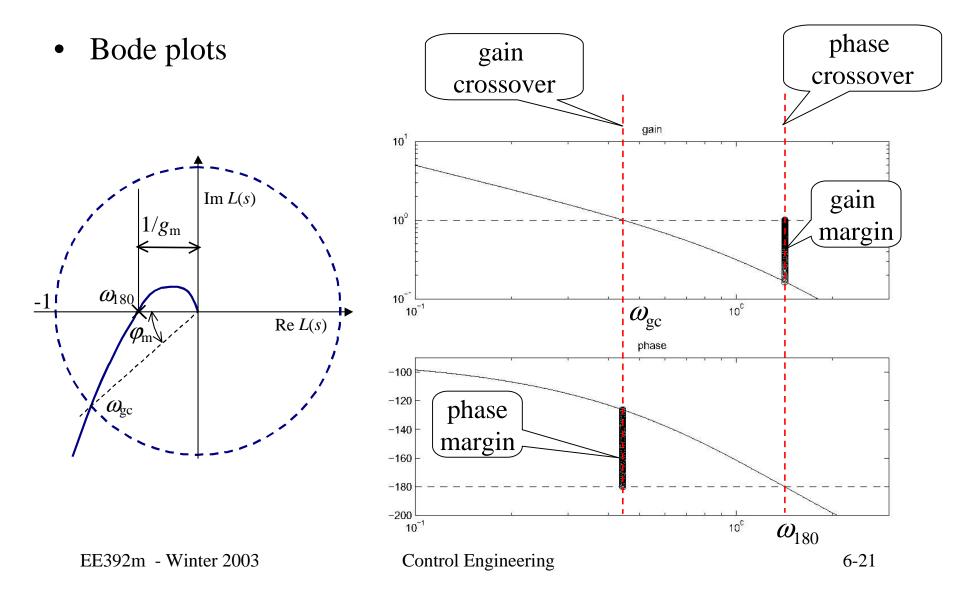


Compare against Small Gain Theorem:

Gain and phase margins



Gain and phase margins



Advanced Control

- Observable and controllable system
 - Can put poles anywhere
 - Can drive state anywhere
- Why cannot we just do this?
 - Large control
 - Error peaking
 - Poor robustness, margins
 - Observability and controllability = matrix rank
 - Accuracy of solution is defined by condition number
- Analysis of this lecture is valid for *any* LTI control, including advanced