Lecture 15 - Distributed Control

- Spatially distributed systems
- Motivation
- Paper machine application
- Feedback control with regularization
- Optical network application
- Few words on good stuff that was left out

Distributed Array Control

- Sensors and actuators are organized in large arrays distributed in space.
- Controlling spatial distributions of physical variables
- Problem simplification: the process and the arrays are uniform in spatial coordinate

Distributed Control Motivation

- Sensors and actuators are becoming cheaper
 - electronics almost free
- Integration density increases
- MEMS sensors and actuators
- Control of spatially distributed systems increasingly common
- Applications:
 - paper machines
 - fiberoptic networks
 - adaptive and active optics
 - semiconductor processes
 - flow control
 - image processing

- Control objective: flat profiles in the cross-direction
- The same control technology for different actuator types: flow uniformity control, thermal control of deformations, and others

Headbox with Slice Lip CD Actuators

EE392m - Winter 2003

Profile Control System

Biaxial Plastic Line Control

Model Structure

• Process-independent model structure

 $\Delta Y = G\Delta U$ $Y \in \mathfrak{R}^m, U \in \mathfrak{R}^n, G \in \mathfrak{R}^{m,n}$

- *G* spatial response matrix with columns g_i
- Known parametric form of the spatial response (noncausal FIR)
- Green Function of the distributed system

$$g_{j,k} = g\varphi(x_k - c_j)$$

- Extract noncausal FIR model
- Fit parameterized response shape

Simple I control

• Compare to Lecture 4, Slide 5

I control

• Step to step update:

 $Y(t) = G \cdot U(t) + D(t)$ $U(t) = U(t-1) - k[Y(t-1) - Y_d]$

• Closed-loop dynamics

$$Y = ((z-1)I + kG)^{-1} [kGY_d + (z-1)D]$$

• Steady state: z = 1

$$Y = Y_d, \qquad U = G^{-1}(Y_d - D)$$

EE392m - Winter 2003

Control Engineering

15-11

Simple I control

Issues with simple I control • *G* not square positive definite – use G^{T} as a spatial pre-filter $Y_{G}(t) = G^{T}G \cdot U(t) + D_{G}(t)$ $Y_{G} = G^{T}Y, \quad D_{G} = G^{T}D$

- For ill-conditioned G get very large control, picketing

 use regularized inverse
- Slowly growing instability
 - control not robust
 - regularization helps again

Control Engineering

15-12

Frequency Domain - Time

- LTI system is a convenient engineering model
- LTI system as an input/output operator
- Causal
- Can be diagonalized by harmonic functions
- For each frequency, the response is defined by amplitude and phase

Frequency Domain - Space

- Linear Spatially Invariant (LSI) system
- LSI system is a convenient engineering model
- LSI system as an input/output operator
- Noncausal
- Can be diagonalized by harmonic functions
- Diagonalization = modal analysis; spatial modes are harmonic functions

Control with Regularization

• Add integrator leakage term

$$\Delta U(t) = -K(Y(t-1) - Y_d) - SU(t-1)$$

- Feedback operator *K*
 - spatial loopshaping
 - $KG \approx 1$ at low spatial frequencies
 - $KG \approx 0$ at high spatial frequencies
- Smoothing operator S
 - regularization
 - $S \approx 0$ at low spatial frequencies
 - $S \approx s_0$ at high spatial frequencies regularization

Spatial Frequency Analysis

- Matrix $G \rightarrow$ convolution operator g (noncausal FIR) \rightarrow spatial frequency domain (Fourier) g(v)
- Similarly: $K \to k(v)$ and $S \to s(v)$
- Each spatial frequency mode evolves independently $y(v) = \frac{g(v)k(v)}{z - 1 + s(v) + g(v)k(v)} y_d + \frac{z - 1 + s(v)}{z - 1 + g(v)k(v)} d$
- Steady state

$$y(v) = \frac{g(v)k(v)}{s(v) + g(v)k(v)} y_d + \frac{s(v)}{s(v) + g(v)k(v)} d$$
$$u(v) = \frac{k(v)}{s(v) + g(v)k(v)} (y_d(v) - d(v))$$

EE392m - Winter 2003

Sample Controller Design

- Spatial domain loopshaping is easy it is noncausal
- Example controller with regularization

EE392m - Winter 2003

WDM network equalization

- WDM (Wave Division Multiplexing) networks
 - multiple (say 40) independent laser signals with closely space wavelength packed (multiplexed) into a single fiber
 - each wavelength is independently modulated
 - in the end the signals are unpacked (de-mux) and demodulated
 - increases bandwidth 40 times without laying new fiber

15-18

WDM network equalization

- Analog optical amplifiers (EDFA) amplify all channels
- Attenuation and amplification distort carrier intensity profile
- The profile can be flattened through active control

See more detail at:

www126.nortelnetworks.com/news/papers_pdf/electronicast_1030011.pdf

WDM network equalization

• Logarithmic (dB) attenuation for a sequence of notch filters

$$A = A_1 \cdot \ldots \cdot A_N$$

$$\log A = \sum_{k=1}^{N} \log A_k$$

EE392m - Winter 2003

Good stuff that was left out

- Estimation and Kalman filtering
 - navigation systems
 - data fusion and inferential sensing in fault tolerant systems
- Adaptive control
 - adaptive feedforward, noise cancellation, LMS
 - industrial processes
 - thermostats
 - bio-med applications, anesthesia control
 - flight control
- System-level logic
- Integrated system/vehicle control