

CS110 Practice Midterm 3 Solution

Solution 1: duet

Leverage your pipe, fork, dup2, and execvp skills to implement duet, which has the
following prototype:

static void duet(int incoming, char *one[], char *two[], int outgoing);

incoming is a valid, read-oriented file descriptor, outgoing is a valid, write-oriented file
descriptor, and one and two are well-formed, NULL-terminated argument vectors. duet
launches two child processes, the first of which executes the program identified in one, the
second of which executes the program identified in two.

The first process’s standard input is rewired to draw bytes from incoming, and its standard
output is rewired to feed bytes to the standard input of the second process, which itself directs its
standard output to whatever resource is bound to outgoing. The function waits for the two
processes (and only those two processes) to run to completion before returning.

Use this and the next page to present your implementation of duet. You may assume that all
system calls succeed, and that the executables identified by one and two always run to
completion without crashing. You should close all unused file descriptors (including incoming
and outgoing once you’ve leveraged their resources).

static void duet(int incoming, char *one[], char *two[], int outgoing) {
 pid_t pids[2];
 int fds[2];
 pipe(fds);
 pids[0] = fork();
 if (pids[0] == 0) {
 close(fds[0]);
 close(outgoing);
 dup2(incoming, STDIN_FILENO);
 close(incoming);
 dup2(fds[1], STDOUT_FILENO);
 close(fds[1]);
 execvp(one[0], one);
 }

 close(incoming);
 close(fds[1]);
 pids[1] = fork();
 if (pids[1] == 0) {
 dup2(fds[0], STDIN_FILENO);
 close(fds[0]);
 dup2(outgoing, STDOUT_FILENO);
 close(outgoing);
 execvp(two[0], two);
 } // continued on next page

Chris Gregg

Chris Gregg
2

 2

 close(outgoing);
 close(fds[0]);
 waitpid(pids[0], NULL, 0);
 waitpid(pids[1], NULL, 0);
}

Solution 2: Short Answer Questions

Unless otherwise noted, your answers to the following questions should be 50 words or fewer.
Responses longer than 50 words will receive 0 points. You needn’t write in complete sentences
provided it’s clear what you’re saying. Full credit will only be given to the best of responses.
Just because everything you write is true doesn’t mean you get all the points.

a. The dup2 system call accepts two presumably valid file descriptors, detaches the second of

the two from its file session, and then attaches it to whatever the first descriptor is attached
to. Briefly outline what happens to the relevant file entry table and vnode table entries as a
result of dup2 being called.

• Decrement refcount of old file table entry, increment refcount of new one
• If refcount of former falls to zero, remove it, and remove relevant entry from vnode

table if it is no longer referenced

b. Explain what happens when you type cd ../.. at the shell prompt. Frame your
explanation in terms of your Assignment 1 file system and the fact that the inode number of
the current working directory is the only relevant global variable maintained by your shell.

Search cwd’s payload for .., set inumber of cwd to inumber associated with ..; repeat one
more time.

c. Consider the prototype for the flock system call, which is as follows:

 int flock(int fd, int op);

flock can be used to gain exclusive access to the file session bound to fd. The op
parameter can (for the purposes of this problem) be one of two constants, and those
constants are:

Ø LOCK_EX, which is a request to grab exclusive access to a file session that should be
respected by all other processes. If the resource isn’t locked at the time of the call,
then it is locked and flock returns right away. If the resource is locked, then the
process blocks within the flock call until the lock is lifted by another process.

Ø LOCK_UN, which releases the lock held on a resource (or is a no-op if the lock wasn’t
held in the first place).

Nick Troccoli

Nick Troccoli

Nick Troccoli

 3

• Explain why information about the locked state of a file session needs to be stored in a
file entry table instead of a file descriptor table.

For lock to be respected by all processes, info must be stored in data structure
referenced by all processes.

• Explain why descriptors created using dup might reference locked file sessions, but

descriptors created using open initially reference a file session that is guaranteed to be
unlocked.

dup returns a descriptor referencing an existing session, promotes its refcount to be at
least 2. open creates new session with refcount of 1.

d. Typically, each page of a process’s virtual address space maps to a page in physical memory
that no other virtual address space maps to. However, when two processes are running the
same executable (e.g. you have two instances of emacs running,) some pages within each of
the two processes’ virtual address spaces can map to the same exact pages in physical
memory. Identify one segment within the processes’ virtual address spaces that could be
backed by the same pages of physical memory, and briefly explain why it’s possible.

• Two such segments? .text/.code and .rodata (i.e. read-only data).
• Why? Possible because segment content is immutable.

e. Your assign1 file system relied on direct indexing for small files and singly and doubly

indirect indexing for large files. In the name of code uniformity, you could have just
represented all files, large and small, using doubly indirect indexing. Briefly describe the
primary advantage (other than uniformity of implementation) and primary disadvantage of
relying on doubly indirect indexing for all file sizes.

• Advantage: supports even larger files than original design.
• Disadvantage: accessing payload for very small files requires many disk accesses,

cache unfriendly

f. Recall that the stack frames for system calls are laid out in a different segment of memory
than the stack frames of user functions. How are the parameters passed to the system calls
received when invoked from user functions? And how is the process informed that all
system call values have been placed and that it’s time to execute?

• system call code and all parameters are received through registers
• system call is invoked by issuing a trap

 4

g. While implementing the farm program for assign2, you were expected to implement a
getAvailableWorker function to effectively block farm until at least one worker was
available. My own getAvailableWorker relied on this helper function:

static sigset_t waitForAvailableWorker() {
 sigset_t existing, additions;
 sigemptyset(&additions);
 sigaddset(&additions, SIGCHLD);
 sigprocmask(SIG_BLOCK, &additions, &existing);
 while (numWorkersAvailable == 0) sigsuspend(&existing);
 return existing;
}

The first quarter I used this assignment, a student asked if one could just use the pause
function instead, as with:

static sigset_t waitForAvailableWorker() {
 sigset_t mask;
 sigemptyset(&mask);
 sigaddset(&mask, SIGCHLD);
 sigprocmask(SIG_BLOCK, &mask, NULL);
 while (numWorkersAvailable == 0) {
 sigprocmask(SIG_UNBLOCK, &mask, NULL);
 pause();
 sigprocmask(SIG_BLOCK, &mask, NULL);
 }
}

The zero-argument pause function doesn’t alter signal masks like sigsuspend does; it
simply halts execution until the process receives any signal whatsoever and any installed
signal handler has fully executed. This is conceptually simpler and more easily explained
than the version that relies on sigsuspend, but it’s flawed in a way my solution is not.
Describe the problem and why it’s there.

Program can deadlock. Problem: After SIGCHLD is unblocked, all workers become
available, numAvailableWorkers becomes maximum value, main execution flow
descends into pause and no more signals are ever sent.

h. My own farm solution included this implementation for closeAllWorkers, which you
can assume is correct:

static void closeAllWorkers() {
 for (size_t i = 0; i < workers.size(); i++) {
 getAvailableWorker();
 }

 signal(SIGCHLD, SIG_DFL);
 for (size_t i = 0; i < workers.size(); i++) {
 close(workers[i].sp.supplyfd);
 kill(workers[i].sp.pid, SIGCONT);
 }

 5

 for (size_t i = 0; i < workers.size(); i++) {
 waitpid(workers[i].sp.pid, NULL, 0);
 }
}

• [1 point, 25 words] Could I have exchanged the close and kill calls within the

second for loop without impacting a worker’s ability to exit? Justify your answer.

Yep. kill would prompt worker to continue and perhaps block on standard
input, but it would EOF out as soon as farm closed supplyfd

• [1 point, 25 words] Assume that I called waitpid using WUNTRACED instead of 0.

Would the program have behaved any differently? Justify your answer.

No. At that point, workers are incapable of self-halting, so WUNTRACED is
effectively a 0.

i. Your stsh supports the slay builtin, which was used to terminate a single process, even if
the process is stopped at the time it is slayed. You were told to terminate the process using
SIGKILL instead of SIGINT, because SIGINT won’t terminate a stopped process until it is
restarted. Why does a stopped process need to be restarted before a tabled SIGINT can
terminate it?

Stopped process could have a SIGINT handler installed, and needs to be able to execute
it to see if it allows process to live. It can only execute post-SIGINT if it’s restarted.

j. When establishing a new process group for a pipeline of two or more commands (as with
echo "abcdefgh" | ./conduit --count 4), your stsh implementation needs to
call setpgid in both the parent and in each of the children ("in order to avoid some race
conditions", as the handout stated it). Describe the race condition that could cause problems
if the parent didn’t call setpgid and instead just relied on each of the children to call it.

Only the parent of a pid or the process with that pid can establish that pid as a new pgid.
If second child calls setpgid before first child does, setpgid will fail and be left in
shell’s process group.

