
CS111 Midterm
Review

Jay Chauhan & Poojan Pandya
Winter ‘25

Unix V6

1

Unix V6
● Disks are sector-addressable. Filesystems read one block at a time. (A block is 1 or

more sectors. For Unix v6, it’s one sector).
● An inode stores metadata about a single file or folder.
● Inodes are stored in blocks in the inode table starting at block 2 (after boot block

and superblock). Inodes are 1 indexed
● If a file is large, it may use more blocks than can be stored in a single inode. In this

case, we use indirect addressing.
● Directories are stored as "files" too.

○ The root directory is always inode number ("inumber") 1.
○ In Unix V6, the block contains an array of 16-byte directory entries.
○ Each directory entry stores a 14-byte name and a 2-byte inumber.

● Directory entries map filenames to inode numbers

Unix V6
If block sizes are 1024 (or 2^10) bytes and inodes are 32 (or 2^5) bytes, what percentage
of the storage device should be allocated for the inode table if we never want to run out of
inodes? Your answer can be approximate, and the 50-words-or-less defense of your
answer should include the necessary math. Assume that all files require at least one block
of payload, and assume a minimum storage device size of 1 terabyte (or 2^40 bytes).

Unix V6
If block sizes are 1024 (or 2^10) bytes and inodes are 32 (or 2^5) bytes, what percentage
of the storage device should be allocated for the inode table if we never want to run out of
inodes? Your answer can be approximate, and the 50-words-or-less defense of your
answer should include the necessary math. Assume that all files require at least one block
of payload, and assume a minimum storage device size of 1 terabyte (or 2^40 bytes).

One block of inodes can lead to at most 2^5 files, each with at least one block. 1 out of
every 2^5 blocks must store inodes. That’s about 3%. (Arguments involving 16 bytes of
dirent structure are also good, but remember that answer only needed to be
approximate.)

File Manipulation

2

Manipulating Files
● Privileged operations (like operating on the file system) are done via the operating

system, rather than in your programs. These are called system calls ("syscalls").
● Syscalls sometimes create file descriptors, which are merely indices into the file

descriptor table.
○ You can think of file descriptors as "ticket numbers" that refer to files or other

open resources (e.g. pipes) the current program has open()ed.
○ You can use them in the read, write, and close syscalls to read and manipulate

files.
● The file descriptor table is stored per process (running program), while the open file

table is global

Syscalls
● Syscalls have different function call semantics from normal functions, since they're

handled by the system.

○ (This distinction prevents vulnerabilities in your code from granting privileged
access to the entire system).

● You can use the open, read, write, and close syscalls to manipulate files and file
descriptors.

File Manipulation
 Write a function, writeBuf that uses the write function to print an entire buffer to a file descriptor (you are not allowed to use the dprintf function for this
question).

/* Function: writeBuf

 * ------------------

 * Writes the contents of buf with size len to the file descriptor fdOut

 * @param fdOut - the file descriptor where the data will be written

 * @param buf - the buffer to write

 * @param len - the number of bytes in the buffer

 */

void writeBuf(int fdOut, char *buf, ssize_t len) {

 // TODO

}

File Manipulation
 /* Function: writeBuf

 * ------------------

 * Writes the contents of buf with size len to the file descriptor fdOut

 * @param fdOut - the file descriptor where the data will be written

 * @param buf - the buffer to write

 * @param len - the number of bytes in the buffer

 */

void writeBuf(int fdOut, char *buf, ssize_t len) {

 ssize_t bytesWritten = 0;

 while (bytesWritten < len) {

 bytesWritten += write(fdOut, buf + bytesWritten,

 len - bytesWritten);

 }

}

Multiprocessing & Pipes

3

Multiprocessing
● Multiprocessing allows us to spawn other processes that run at the same time.

● You can create a clone of your program by running fork.
○ This creates a full copy of your process - right down to the current line of code!
○ The original is the "parent" and the new one is the "child".
○ The only difference is the return value of fork: 0 if you're the child, and the PID

(process ID) of the child if you're the parent.
○ Both the parent and the child run at the same time, and there is no

guarantee about the order in which they run.
● You can use waitpid to stall until a child quits, and observe how it exited (i.e. see if it

crashed).

Multiprocessing II
● Parents should always wait on child processes, because waiting cleans up ("reaps")

information about children.

● waitpid returns the PID of the process it waited for.
○ You can wait on any one child by passing in -1 for "pid"
○ You can get information by using the "status" parameter.
○ We can check if a process segfaulted with WIFSIGNALED and WTERMSIG.

Multiprocessing III
● Most commonly, you'll want to create a child process that runs a totally different

program to do something for you.

● You can achieve this by forking, and then using execvp.

● execvp (exec + vp; v for argv, p for path) takes in the path of a program, and a
null-terminated array of arguments.

○ execvp never returns (the process is cannibalized)

Pipes
● Pipes allows processes to communicate!

● Pipes are a construct that allow you to read/write data like you would with a file,
without needing to manage a file.

○ Relies on the fact that file descriptors are kept when execvp'ing.

■ Remember to pipe before you fork if you’re sharing a pipe between a
parent and a child!

Pipelines
● Create them using pipe or pipe2.

○ Returns 0 on success, -1 on error
○ populates the 2-elem fds array with 2 file descriptors
○ fds[0] is the "read end" of the pipe, fds[1] is the "write end".

■ "You learn to read before you learn to write."
● Beware: Make sure to close the file descriptors you're not using - may lead to various

issues, such as pipe stalling.
○ Child reads from pipe, but parent waits for child to finish before writing - Child

will stall.
○ Child reads until there is nothing left, but write end of pipe is not closed

everywhere - program will stall, read will only finish once it detects write is
closed.

● We can also use kill to terminate another process (using its PID).

Pipeline and I/O Redirection
● dup2 supports fd redirection - duplicates an open resource session from one file

descriptor number to another - i.e. both fd will point to the same file table entry.
● We can use this feature to accomplish:

○ I/O Redirection: If fd 0/1/2 are changed, we can redirect
STDIN/STDOUT/STDERR to be something else without the program knowing.

○ Pipelines: If we rewire a program's sequence of input/outputs so that a
program B reads its inputs from program A's outputs, we create pipelines - i.e.
the previous program feeds the input of the next program.

Multiprocessing
Believe it or not, sorting is still an active research field, and computer scientists develop
new sorting algorithms frequently. Some sorting algorithms are better than others. For this
problem, you will write sleep sort, a sorting algorithm literally first posted on an online
internet forum.

Here is how the sleep sort algorithm works: the function loops through an unsorted vector
of integers, forks a process, and sleeps, in seconds, equal to the integer itself. After the
sleep is complete, it prints the number to stdout. Convince yourself that this will, indeed,
print out a sorted list of integers, and then convince yourself that it is an incredibly
inefficient way to sort a list of integers.

void sleepsort(vector<int> numbers) {

 // TODO

}

Multiprocessing
void sleepsort(vector<int> numbers) {

 for (int n : numbers) {

 pid_t pid = fork();

 if (pid == 0) {

 sleep(n);

 printf("%d\n", n);

 exit(0);

 }

 }

 for (size_t i=0; i < numbers.size(); i++) {

 waitpid(-1, NULL, 0);

 }

}

Multiprocessing
Consider the following C program and its
execution. Assume all processes run to
completion, all system and printf calls
succeed, and that all calls to printf are
atomic. Assume nothing about
scheduling or time slice durations.

List all possible outputs.

20

Multiprocessing
Consider the following C program and its
execution. Assume all processes run to
completion, all system and printf calls
succeed, and that all calls to printf are
atomic. Assume nothing about
scheduling or time slice durations.

List all possible outputs.

21

Multithreading

4

Threads
● Threads allow you to run multiple functions simultaneously, within the same

process.
● This means that all threads share the same address space.
● Create threads using the thread constructor, which creates a thread object.

○ Example: thread(functionName, arg1, ref(referenceArg2), …)
○ To pass arguments by reference, you must use the ref function.

● You can wait for a thread to finish using the join method, e.g. myThread.join();

Race Conditions
● With everything sharing memory space, many threads can compete for access to

the same memory at once, which causes undefined behavior (BAD).
● To avoid these "race conditions", you can use mutexes, which allow only one thread

through it at a time!
○ Use these to block off "Critical Sections" of your code.
○ "Critical Section" = "Only one thread may execute this code at a time".

● Deadlock is when multiple threads get into a situation where they're permanently
waiting on shared resources. Examples:
○ Thread A waiting on a mutex that is never unlocked.
○ Thread A and Thread B mutually waiting on each other to complete (cyclic

waiting).

Race Condition Checklist
1. Identify shared data that may be modified concurrently. What shared data is

used across threads, passed by reference or globally?
2. Document and confirm an ordering of events that causes unexpected behavior.

What assumptions are made in the code that can be broken by certain orderings?
3. Use concurrency directives to force expected orderings and add constraints.

How can we use mutexes, atomic operations, or other constraints to force the correct
ordering(s).

Crash Recovery

5

Block Cache
● Since accessing the disk can be expensive, the file system often caches blocks

● These blocks are written back to the disk later (delayed writes), which leads to
better performance, but can cause data loss if a crash occurs before a block is
written back

● Cache has the freedom to write back blocks in any order

Crash Recovery Mechanisms
● fsck: runs on boot after a crash to scan & repair inconsistencies

○ Can take a very long time
○ Limited in what kinds of inconsistencies it can resolve

● Ordered-Writes: Doing operations in specific orders can avoid certain classes of
problems
○ Example: initialize inode before adding it to a directory entry
○ General rules:

■ Initialize targets before creating references
■ Remove references before freeing resources

● Write-Ahead Logging (more info on next slide)

Write-Ahead Logging
● General idea: write metadata operations to a log before executing them

○ Example: "Adding block 4267 to inode 27" is written to log before performing
the operation.

● Importantly, the log does not track payload data!

● Common A2 error: the free list tracks blocks, not inodes

Questions?

