
	 1	

Practice	Midterm	Exam	Solutions

1. Short Answer
Part A: Scattering Inodes

One example:

• Benefit: fewer seeks between accessing an inode and accessing its payload data
• Drawback: increased complexity in finding inodes

Part B: Log Issues

The problem is that the append operation isn’t idempotent: if the operation is done multiple times, it will
produce a different result than if it is done only once. This is a problem because it’s possible that the
operation has already been reflected on disk at the time of a crash, so replaying the log may perform the
operation a second time. In general we don’t know whether operations have already been performed or not
when a crash occurs, so it’s important that all operations in the log are idempotent.

Part C: Doubly-Indirect Indexing

• Advantage: supports even larger files than original design.
• Disadvantage: accessing payload for very small files requires many disk accesses

Part D: Rename

Find the inode number of the file being moved by iteratively drilling toward it as pathname_lookup
would. Remove file’s dirent from parent directory payload, and then drill toward new parent directory of
second argument, creating new dirent’s along the way as needed. Finally, append new dirent on
behalf of new name, with new name (e.g. index-w19.html) and existing inode number.

Part E: Crash Recovery Tradeoffs

Generally, if we want to improve durability and consistency, we must sacrifice performance in order to
perform additional operations / write more aggressively to avoid data loss. As an example, the block cache
may have delayed writes of about 30 seconds to improve performance, but this means we may lose the last
30sec of data. If we wrote immediately, this would improve crash recovery, but at the expense of
performance. (Another example is data logging – logging doesn’t usually support payload data due to the
amount of data that would log, thus impacting performance, but it means that we don’t log payload changes
so that data may be lost. If we did log payload data, we would have better crash recovery but the logging
operations would be much more intensive and affect system performance.)

Part F: Multithreading

Three possibilities (there are more, these are just 3):

50 (if thread 1 runs to completion, then thread 2 runs to completion)

40 (if thread 2 runs to completion, then thread 1 runs to completion)

	 2	

60 (if thread 1 increments, then thread 2 increments, then thread 1 multiplies, then thread 2 multiplies)

	 3	

2. Duet
Sample Solution

static void duet(int incoming, char *one[], char *two[], int outgoing) {
 pid_t pids[2];
 int fds[2];
 pipe(fds);
 pids[0] = fork();
 if (pids[0] == 0) {
 close(fds[0]);
 close(outgoing);
 dup2(incoming, STDIN_FILENO);
 close(incoming);
 dup2(fds[1], STDOUT_FILENO);
 close(fds[1]);
 execvp(one[0], one);
 }

 close(incoming);
 close(fds[1]);
 pids[1] = fork();
 if (pids[1] == 0) {
 dup2(fds[0], STDIN_FILENO);
 close(fds[0]);
 dup2(outgoing, STDOUT_FILENO);
 close(outgoing);
 execvp(two[0], two);
 }

 close(outgoing);
 close(fds[0]);
 waitpid(pids[0], NULL, 0);
 waitpid(pids[1], NULL, 0);
}

	 4	

3. Expression Evaluation
Sample Solution

typedef struct ThreadInfo {
 vector<int> v;
 mutex m;
} ThreadInfo;

static void evaluate(Expression& exp, ThreadInfo& info) {
 int result = exp.evaluate();
 info.m.lock();
 info.v.push_back(result);
 info.m.unlock();
}

static bool concurrentAnd(const vector<Expression>& expressions) {
 ThreadInfo info;

 vector<thread> threads;
 for (size_t i = 0; i < expressions.size(); i++) {
 threads.push_back(thread(evaluate, ref(expressions[i]),
 ref(info)));
 }

 for (thread& t : threads) t.join();

 printResults(info.v);
}

	 5	

4. Multiprocessing
Part A: Close

The close(sp.supplyfd) within the test program can only indicate the end of input that sort
must process if all other references to the write end are closed. That doesn’t happen unless we
close it everywhere it’s needed. If we don’t, sort will continue waiting for more input forever
thinking that more could come.

Part B: Thyme

Sample Solution

int main(int argc, char *argv[]) {
 struct timespec start;
 clock_gettime(CLOCK_REALTIME, &start);
 pid_t pid = fork();
 if (pid == 0) execvp(argv[1], argv + 1);
 waitpid(pid, NULL, 0);
 struct timespec finish;
 clock_gettime(CLOCK_REALTIME, &finish);
 print_elapsed_time(&start, &finish);
 return 0;
}

