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Problem and solution authors include Marty Stepp. 

 
Reference Sheet: 
This week is about graphs with vertexes and edges. The first couple pages are cheat sheets for 
graph terminology and common search algorithms. Recommended problems: do 1-4 to get 
comfortable. 5-7 are good problems to start with, and give 8 a shot if you are feeling adventurous. 

graph: A data structure containing: 
    a set of vertexes V (sometimes called "nodes"), 
    a set of edges E ("arcs"), where each is a connection between 2 vertexes. 
degree: number of edges touching a given vertex. 
path: A path from vertex A to B is a sequence of edges that can be followed 
starting from A to reach B. 
    can be represented as vertexes visited, or edges taken 
neighbor or adjacent: Two vertexes connected directly by an edge. 
reachable: Vertex A is reachable from B if a path exists from A to B. 
connected graph: A graph is connected if every vertex is reachable from every other. 
cycle: A path that begins and ends at the same vertex. 
    acyclic graph: One that does not contain any cycles. 
    loop: An edge directly from a vertex to itself. 
weight: Cost associated with a given edge. 
    weighted graph: One where edges have weights (see graph below). 
directed graph: A graph where edges are one-way connections. 
undirected graph: A graph where edges don’t have a direction. 
 depth-first search (DFS): Finds a path between two vertexes by 
exploring each possible path as far as possible before 
backtracking. 
    Often implemented recursively. 
breadth-first search (BFS): Finds a path between two vertexes by 
taking one step down all paths and then immediately backtracking. 
    Often implemented by maintaining a queue of vertexes to visit. 
Dijkstra's algorithm: Finds paths between one vertex and all other vertexes by maintaining 
information about how to reach each vertex (cost and previous vertex) and continually improving 
that information until it reaches the best solution. 
    Often implemented by maintaining a priority queue of vertexes to visit. 
A* algorithm: A variation of Dijkstra's algorithm that incorporates a heuristic function to prioritize 
the order in which to visit the vertexes. 
minimum spanning tree: the set of connected edges with the smallest total weight that covers 
every vertex in the graph 
Kruskal’s algorithm: An algorithm to find the minimum spanning tree of a graph 
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Depth-first search (DFS) pseudo-code: 
function  dfs(v1,  v2):  
    dfs(v1,  v2,  {  }).  
  
function  dfs(v1,  v2,  path):  
    path  +=  v1.  
    mark  v1  as  visited.  
    if  v1  is  v2:  
        a  path  is  found!  
  
    for  each  unvisited  neighbor  n  of  v1:  
        if  dfs(n,  v2,  path)  finds  a  path:  
            a  path  is  found!  
  
    path  -­‐=  v1.    //  path  is  not  found.	
  

Breadth-first search (BFS) pseudo-code: 
function  bfs(v1,  v2):  
    queue  :=  {v1}.  
    mark  v1  as  visited.  
  
    while  queue  is  not  empty:  
        v  :=  queue.dequeue().  
        if  v  is  v2:  
            a  path  is  found!  
  
        for  each  unvisited  neighbor  n  of  v:  
            mark  n  as  visited.  
            queue.enqueue(n).  
  
    //  path  is  not  found.  

Dijkstra's algorithm pseudo-code: 
  
function  dijkstra(v1,  v2):  
    for  each  vertex  v:  
        v's  cost  :=  infinity.  
        v's  previous  :=  none.  
    v1's  cost  :=  0.  
    pqueue  :=  {v1,  at  priority  0}.  
  
    while  pqueue  is  not  empty:  
        v  :=  pqueue.dequeue().  
        mark  v  as  visited.  
        for  each  unvisited  neighbor  n  of  v:  
            cost  :=  v's  cost  +    
                            weight  of  edge  (v,  n).  
            if  cost  <  n's  cost:  
                n's  cost  :=  cost.  
                n's  previous  :=  v.  
                enqueue/update  n  in  pqueue.  
    reconstruct  path  back  from  v2  to  v1.	
  

A* algorithm pseudo-code: 
  
function  astar(v1,  v2):  
    for  each  vertex  v:  
        v's  cost  :=  infinity.  
        v's  previous  :=  none.  
    v1's  cost  :=  0.  
    pqueue  :=  {v1,  at  priority  H(v1,  v2)}.  
  
    while  pqueue  is  not  empty:  
        v  :=  pqueue.dequeue().  
        mark  v  as  visited.  
        for  each  unvisited  neighbor  n  of  v:  
            cost  :=  v's  cost  +    
                            weight  of  edge  (v,  n).  
            if  cost  <  n's  cost:  
                n's  cost  :=  cost.  
                n's  previous  :=  v.  
                enqueue  n  at  priority  (cost  +  H(n,  v2)).  
    reconstruct  path  back  from  v2  to  v1.  

 
Important parts of Stanford Graph library: (more online)  

BasicGraph()  
g.addEdge(v1,  v2);  
g.addVertex(vertex);  
g.clear();  
g.getEdge(v1,  v2)  
g.getEdgeSet()  
g.getEdgeSet(vertex)  
g.getNeighbors(vertex)  

g.getVertex(name)  
g.getVertexSet()  
g.isConnected(v1,  v2)  
g.isEmpty()  
g.removeEdge(v1,  v2);  
g.removeVertex(vertex);  
g.size()  
g.toString()  
  

  
struct  Vertex  {                
        string  name;  

  Set<Edge*>  edges;  
 

  double  cost;            //  initially  0.0  
  bool  visited;          //  initially  false  
  Vertex*  previous;  //  initially  NULL  

};  
  

  
struct  Edge  {  
        Vertex*  start;  
        Vertex*  finish;  
        double  cost;  
 

        bool  visited;      //  initially  false  
};  
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1.   Graph Properties. 
For the graphs shown below, answer the following questions: 

a.   Which graphs are directed, and which are undirected? 
b.   Which graphs are weighted, and which are unweighted? 
c.   Which graphs are connected, and which are not?  Is any graph strongly connected? 
d.   Which graphs are cyclic, and which are acyclic? 
e.   What is the degree of each vertex?  (If it is directed, what is the in-degree and out-degree?) 

 

 
 

2.   depth-first search (DFS) 
Write the paths that a depth-first search would find from vertex A to all other vertexes in graphs 1 
and 6. If a given vertex is not reachable from vertex A, write "no path" or "unreachable". 

 

3.   breadth-first search (BFS) 
Write the paths that a breadth-first search would find from vertex A to all other vertexes in 
graphs 1 and 6. Which paths are shorter than the ones found by DFS in the previous 
problem? 
 

4.   minimum weight paths 
Which paths found by DFS and BFS on Graph 6 in the previous problems are not minimal weight? 
What are the minimal weight paths from vertex A to all other nodes?  (Just inspect the graph 
manually.) 
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5.   kthLevelFriends. Imagine a graph of Facebook friends, where users are vertexes and friendships are 
edges. Write a function   

Set<Vertex*>  kthLevelFriends(BasicGraph&  graph,  Vertex*  v,  int  k)	
  

that returns the set of people who are exactly k hops away from the vertex v (and not fewer). For 
example, if k = 1, those are v’s direct friends; if k = 2, they are your friends-of-friends. If k = 0, 
return a set containing only the user. (Assume input arguments are valid.) 

	
  

6.   isReachable. Write a function  

bool  isReachable(BasicGraph&  graph,  Vertex*  v1,  Vertex*  v2)	
  

that returns true if a path can be made from the vertex v1 to the vertex v2 , or false if not. If the two 
vertexes are the same, return true. Use either BFS or DFS, described in the reference above. Bonus: 
do this problem twice with both BFS and DFS. 

	
  

7.   isConnected. Write a function	
    

bool  isConnected(BasicGraph&  graph)	
  

that returns true if a path can be made from every vertex to any other vertex, or false if there is any 
vertex cannot be reached by a path from some other vertex. An empty graph is defined as being 
connected. You can use the isReachable function from the previous problem to help solve this 
one. 

	
  

8.   findMinimumVertexCover. Write a function  

Set<Vertex*>  findMinimumVertexCover(BasicGraph&  graph)	
  

that returns a set of vertex pointers identifying a minimum vertex cover. A vertex cover is a subset 
of an undirected graph’s vertexes such that each and every edge in the graph is incident to at least 
one vertex in the subset. A minimum vertex cover is a vertex cover of the smallest possible size. 
Consider the following graph on the left: 

Each of the four illustrations after it on the right shows some vertex cover (shaded nodes are 
included in the vertex cover, and hollow ones are excluded). Each one is a vertex cover because 
each edge touches at least one vertex in the cover. The two vertex covers on the right are 
minimum vertex covers, because there is no smaller vertex cover. 

Understand that because the graph is undirected, that means for every edge that leads from some 
vertex v1 to v2, there will be an edge that leads from v2 to v1. If there are two or more minimum 
vertex covers, then you can return any one of them. Think of this as a backtracking problem. The 
implementation of this function should consider every possible vertex subset, keeping track of the	
  
smallest one that covers the entire graph. Try all possible vertex combinations using a "choose-
explore-unchoose" pattern and keep track of state along the way. 


