
CS106B  

Spring 2016 Cynthia Lee 

Section 6 (Week 7) Handout 
Problem and solution authors include Marty Stepp, Jerry Cain and Cynthia Lee. 

 
Binary Tree Reference: 

struct TreeNode { 
    int data; 
    TreeNode* left; 
    TreeNode* right; 
    ... 
}; 
 
class BinaryTree { 
public: 
    member functions; 
private: 
    TreeNode* root; // NULL if empty 
}; 
 

Binary Tree Member Functions 

Problems 1 and 2 ask you to add a member function to the BinaryTree class from 
lecture. In all cases, if your function deletes a node from the tree, free the associated 
memory for the node.  
 
1.   removeLeaves. Write a member function removeLeaves that removes the leaf nodes 

from a tree. A leaf is a node that has empty left and right subtrees. If a variable t refers 
to the tree below at left, the call of t.removeLeaves(); should remove the four 
leaves from the tree (the nodes with data 1, 4, 6 and 0). A second call would eliminate 
the two new leaves in the tree (the ones with data values 3 and 8). A third call would 
eliminate the one leaf with data value 9, and a fourth call would leave an empty tree 
because the previous tree was exactly one leaf node. If your function is called on an 
empty tree, it does not change the tree because there are no nodes of any kind (leaf or 
not). Free the memory for any removed nodes. 

 

before call 
 
      7 
     / \ 
    3   9 
   / \ / \ 
  1  4 6  8 
           \ 
            0 

after 1st call 
 
      7 
     / \ 
    3   9 
         \ 
          8 
           
            

after 2nd call 
 
      7 
       \ 
        9 
          
 

after 3rd call 
 
      7 
 

after 4th call 
 
     NULL 



  2  

2.   tighten. Write a member function tighten that eliminates branch nodes that have only 
one child. For example, if a variable t stores the tree below at left, the call of 
t.tighten(); should leave t storing the tree at right. The nodes that stored 28, 19, 
32, and -8 have been eliminated because each had one child. When a node is 
removed, it is replaced by its child. This can lead to multiple replacements because the 
child might itself be replaced (as in 19 which is replaced by 32, replaced by 72). Free 
memory as needed. 
 

before call 
           12 
          /  \ 
        28    19 
       /      /   
     94      32     
    /  \       \    
  65   -8       72 
         \     /  \ 
         10   42  50 

  after call 
           12 
          /  \ 
        94    72 
       / \    / \  
     65  10  42  50   
 
 

  
  



  3  

3.   Quadtrees 
  

A quadtree is a rooted tree structure where each internal node has precisely four children.  
Every node in the tree represents a square, and if a node has children, each encodes one of 
that square’s four quadrants. 
 
Quadtrees have many applications in computer graphics, because they can be used as in-
memory models of images.  That they can be used as in-memory versions of black and white 
images is easily demonstrated via the following (borrowed from Wikipedia.org): 
 

 

 

 

 

 

  

 
 

 
The 8 by 8 pixel image on the left is modeled by the quadtree on the right.  Note that all 
leaf nodes are either black or white, and all internal nodes are shaded gray.  The internal 
nodes are gray to reflect the fact that they contain both black and white pixels.  When the 
pixels covered by a particular node are all the same color, the color is stored in the form of 
a Boolean and all four children are set to NULL.  Otherwise, the node’s sub-region is 
recursively subdivided into four sub-quadrants, each represented by one of four children. 
 
Given a Grid<bool> representation of a black and white image, implement the 
gridToQuadtree function, which reads the image data, constructs the corresponding 
quadtree, and returns its root.  Frame your implementation around the following data 
structure: 

  
struct  quadtree  {  
   int  lowx,  highx;  //  smallest  and  largest  x  value  covered  by  node  
   int  lowy,  highy;  //  smallest  and  largest  y  value  covered  by  node  
   bool  isBlack;  //  entirely  black?  true.    Entirely  white?  False.  Mixed?  ignored  
   quadtree  *children[4];  //  0  is  NW,  1  is  NE,  2  is  SE,  3  is  SW  
};  

  
Assume the lower left corner of the image is the origin, and further assume the image is 
square and that the dimension is a perfect power of two. 

 
static  quadtree  *gridToQuadtree(Grid<bool>&  image);  

  



  4  

4.   Hashing (part 1).  
Let’s say we have a class StRiNg where two StRiNgs are considered equal if they are 
equal, ignoring upper and lower case. Other than that, they are the same as normal 
strings. Which of the following functions are legal hash functions for StRiNgs? Which 
functions are good hash functions? 
 

int  hash1(StRiNg&  s)  {  
      return  0;  
}  

int  hash3(StRiNg&  s)  {  
    int  product  =  1;  
    for  (int  i  =  0;    
              i  <  s.length();  i++)  {  
          product  *=  tolower(s[i]);  
    }  
    return  product;  
} 

int  hash2(StRiNg&  s)  {  
    int  sum  =  0;  
    for  (int  i  =  0;    
              i  <  s.length();  i++)  {  
          sum  +=  s[i];  
    }  
    return  sum;  
} 

int  hash4(StRiNg&  s)  {  
      return  (int)  &s;  
} 

 
 
 

5.   Hashing (part 2). 
If our hash table has 6 buckets, diagram the result of putting the following values into 
the hash table, using a hash function that adds up the values of each letter in the string 
(where ‘a’ is 1, ‘b’ is 2, etc.) and mods by the hash table length (6). If two strings 
collide, put them into a linked list. Bonus: diagram the resulting bucket arrangement 
after rehashing it to have 12 buckets. 
 
cabbage,  baggage,  deadbeef,  cafe,  badcab,  feed  

 
  


