CS106B Spring 2016

1. Backtracking -- partitionable.

2. Big-O Notation.

i. The function has complexity O(n). To see this, note that the inner loop runs exactly *n* times, each doing a constant amount of work. Therefore, the overall complexity is O(n). This means that there is no dependence on *m*.

ii. Since n has doubled from 200 to 400 and the time complexity is O(n), the new runtime should be about twice the runtime as before, so it should take about 2μ s.

We can't give an exact value for the runtime because big-O notation ignores lowerorder growth terms. These other terms can contribute to the runtime as well for small values of *n*, and might influence the overall runtime.

iii. The runtime is O(n). To see this, note that

- raiseToPower(m, n) does O(1) work, then calls raiseToPower(m, n 1).
- raiseToPower(m, n 1) does O(1) work, then calls raiseToPower(m, n - 2)
- ..
- raiseToPower(m, 1) does O(1) work, then calls raiseToPower(m, 0).
- raiseToPower(m, 0) does O(1) work.

This means that there are a total of n + 1 calls, each of which does O(1) work. Therefore, the total work done is O(n). iv. As before, the runtime will be around $2\mu s$.

v. The time complexity is $O(\log n)$. Note that at each level of the recurrence, n's value goes down by a factor of two. This means that the maximum number of recursive calls can be at most $O(\log n)$, since at that point n will have shrunk down to 0 (since we always round down). Each level does only O(1) work, so the total runtime is $O(\log n)$.

vi. Note that $\log 10000 = \log 100^2 = 2 \log 100$. Therefore, we would expect the second call to raiseToPower to take about twice as long as before, giving a runtime of 2μ s.

vii. Notice that this function makes two recursive calls at each level. This means that

- There is one recursive call with *n* at its initial value.
- There are two recursive calls with n around n / 2.
- There are four recursive calls with n around n / 4.
- There are eight recursive calls with n around n / 8.

• ...

• There are 2^k recursive calls with *n* around $n / 2^k$.

Eventually, this process stops when $k > \log_2 n$. When that happens, the bottom layer will have a total of around *n* total recursive calls (since $2^k > 2^{\log n} = n$). Each recursive call does a total of O(1) work, so the total amount of work done is equal to the total number of recursive calls, which is

$$1 + 2 + 4 + 8 + \dots + 2^{\log n}$$

This is the sum of a geometric series. It turns out that this is equal to $2^{1 + \log n} - 1 = 2 \cdot 2^{\log n} - 1 = 2n - 1$

So the total runtime is O(n).

3. Constructors and Destructors.

The ordering is as follows:

- A constructor is called when elem is declared in main.
- A constructor is then called to set toPrint equal to a copy of elem.
- A constructor is then called to initialize the temp variable in printStack.
- When printStack exits, a destructor is called to clean up the temp variable.
- Also when printStack exits, a destructor is called to clean up the toPrint variable.
- When main exits, a destructor is called to clean up the elem variable.