## Section 4 (Week 5) - SOLUTION

## 1. Backtracking -- partitionable.

```
bool partitionable(Vector<int>& list) {
    return helper(list, 0, 0);
}
bool helper(Vector<int>& rest, int sum1, int sum2) {
    if (rest.isEmpty()) {
        return sum1 == sum2;
    } else {
        int n = rest[0];
        rest.remove(0);
        bool answer = helper(rest, sum1 + n, sum2) ||
                helper(rest, sum1, sum2 + n);
        rest.insert(0, n);
        return answer;
    }
}
```


## 2. Big-O Notation.

i. The function has complexity $\mathrm{O}(n)$. To see this, note that the inner loop runs exactly $n$ times, each doing a constant amount of work. Therefore, the overall complexity is $\mathrm{O}(n)$. This means that there is no dependence on $m$.
ii. Since n has doubled from 200 to 400 and the time complexity is $\mathrm{O}(n)$, the new runtime should be about twice the runtime as before, so it should take about $2 \mu \mathrm{~s}$.

We can't give an exact value for the runtime because big-O notation ignores lowerorder growth terms. These other terms can contribute to the runtime as well for small values of $n$, and might influence the overall runtime.
iii. The runtime is $\mathrm{O}(n)$. To see this, note that

- raiseToPower (m, n) does $O(1)$ work, then calls raiseToPower (m, $n-1)$.
- raiseToPower (m, $n-1$ ) does $O(1)$ work, then calls raiseToPower(m, n - 2)
- ...
- raiseToPower ( $m, 1$ ) does $O(1)$ work, then calls raiseToPower ( $m, 0$ ).
- raiseToPower $(m, 0)$ does $O(1)$ work.

This means that there are a total of $n+1$ calls, each of which does $\mathrm{O}(1)$ work. Therefore, the total work done is $\mathrm{O}(n)$.
iv. As before, the runtime will be around $2 \mu \mathrm{~s}$.
v. The time complexity is $\mathrm{O}(\log n)$. Note that at each level of the recurrence, $n$ 's value goes down by a factor of two. This means that the maximum number of recursive calls can be at most $\mathrm{O}(\log n)$, since at that point $n$ will have shrunk down to 0 (since we always round down). Each level does only $\mathrm{O}(1)$ work, so the total runtime is $\mathrm{O}(\log n)$.
vi. Note that $\log 10000=\log 100^{2}=2 \log 100$. Therefore, we would expect the second call to raiseToPower to take about twice as long as before, giving a runtime of $2 \mu \mathrm{~s}$.
vii. Notice that this function makes two recursive calls at each level. This means that

- There is one recursive call with $n$ at its initial value.
- There are two recursive calls with $n$ around $n / 2$.
- There are four recursive calls with $n$ around $n / 4$.
- There are eight recursive calls with $n$ around $n / 8$.
- ...
- There are $2^{k}$ recursive calls with $n$ around $n / 2^{k}$.

Eventually, this process stops when $k>\log _{2} n$. When that happens, the bottom layer will have a total of around $n$ total recursive calls (since $2^{k}>2^{\log n}=n$ ). Each recursive call does a total of $\mathrm{O}(1)$ work, so the total amount of work done is equal to the total number of recursive calls, which is

$$
1+2+4+8+\ldots+2^{\log n}
$$

This is the sum of a geometric series. It turns out that this is equal to

$$
2^{1+\log n}-1=2 \cdot 2^{\log n}-1=2 n-1
$$

So the total runtime is $\mathrm{O}(\mathrm{n})$.

## 3. Constructors and Destructors.

The ordering is as follows:

- A constructor is called when elem is declared in main.
- A constructor is then called to set toPrint equal to a copy of elem.
- A constructor is then called to initialize the temp variable in printStack.
- When printStack exits, a destructor is called to clean up the temp variable.
- Also when printStack exits, a destructor is called to clean up the toPrint variable.
- When main exits, a destructor is called to clean up the elem variable.

