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Section 4 (Week 5) - SOLUTION 
 
1. Backtracking -- partitionable.   
 
    bool partitionable(Vector<int>& list) { 
        return helper(list, 0, 0); 
    } 
    bool helper(Vector<int>& rest, int sum1, int sum2) { 
        if (rest.isEmpty()) { 
            return sum1 == sum2; 
        } else { 
            int n = rest[0]; 
            rest.remove(0); 
            bool answer = helper(rest, sum1 + n, sum2) || 
                          helper(rest, sum1, sum2 + n); 
            rest.insert(0, n); 
            return answer; 
        } 
    } 
 
2. Big-O Notation.  
 

i. The function has complexity O(n). To see this, note that the inner loop runs exactly n 
times, each doing a constant amount of work. Therefore, the overall complexity is O(n). 
This means that there is no dependence on m. 

 
ii. Since n has doubled from 200 to 400 and the time complexity is O(n), the new 
runtime should be about twice the runtime as before, so it should take about 2μs. 
 
We can't give an exact value for the runtime because big-O notation ignores lower-
order growth terms. These other terms can contribute to the runtime as well for small 
values of n, and might influence the overall runtime. 
 
iii. The runtime is O(n). To see this, note that 

•   raiseToPower(m, n) does O(1) work, then calls raiseToPower(m, n – 1). 
•   raiseToPower(m, n – 1) does O(1) work, then calls  

    raiseToPower(m, n – 2)  
•   ... 
•   raiseToPower(m, 1) does O(1) work, then calls raiseToPower(m, 0). 
•   raiseToPower(m, 0) does O(1) work. 

 
This means that there are a total of n + 1 calls, each of which does O(1) work. 
Therefore, the total work done is O(n). 
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iv. As before, the runtime will be around 2μs. 
 
v. The time complexity is O(log n). Note that at each level of the recurrence, n's value 
goes down by a factor of two. This means that the maximum number of recursive calls 
can be at most O(log n), since at that point n will have shrunk down to 0 (since we 
always round down). Each level does only O(1) work, so the total runtime is O(log n). 
 
vi. Note that log 10000 = log 1002 = 2 log 100. Therefore, we would expect the second 
call to raiseToPower to take about twice as long as before, giving a runtime of 2μs. 
 
vii. Notice that this function makes two recursive calls at each level. This means that 

•   There is one recursive call with n at its initial value. 
•   There are two recursive calls with n around n / 2. 
•   There are four recursive calls with n around n / 4. 
•   There are eight recursive calls with n around n / 8.  
•   ... 
•   There are 2k recursive calls with n around n / 2k. 

 
Eventually, this process stops when k > log2 n. When that happens, the bottom layer 
will have a total of around n total recursive calls (since 2k > 2log n = n). Each recursive 
call does a total of O(1) work, so the total amount of work done is equal to the total 
number of recursive calls, which is 

1 + 2 + 4 + 8 + ... + 2log n 
 
This is the sum of a geometric series. It turns out that this is equal to 

21 + log n – 1 = 2 · 2log n – 1 = 2n – 1 
 

So the total runtime is O(n). 
 
 

3. Constructors and Destructors.   
 
The ordering is as follows: 

•   A constructor is called when elem is declared in main. 
•   A constructor is then called to set toPrint equal to a copy of elem. 
•   A constructor is then called to initialize the temp variable in printStack. 
•   When printStack exits, a destructor is called to clean up the temp variable. 
•   Also when printStack exits, a destructor is called to clean up the toPrint 

variable. 
•   When main exits, a destructor is called to clean up the elem variable. 


