
CS106B

Spring 2016 Cynthia Lee

Section 3 (Week 4) Handout
Section problems by Marty Stepp, with edits by Cynthia Lee

This week is all about practicing recursion, so all your code should be recursive, even if
you can solve the problem iteratively. Try to make your recursion as elegant as possible.
Avoid redundant cases and if statements. In addition, think about what kinds of inputs are
invalid for each problem; your function should throw an error if it receives invalid input.

1. stutter.
Write a function named stutter that takes a stack of integers and replaces each integer with
two copies of that integer.

stutter({1}) {1, 1}
stutter({1, 2, 3}) {1, 1, 2, 2, 3, 3}

 void stutter(Stack<int>& s) { ...

2. starString.
Write a function named starString that returns a string of 2n asterisks. Throw an error if n is
negative.

starString(1) “**”
starString(2) “****”
starString(4) “****************”

 string starString(int n) { ...

3. writeChars.
Write a function named writeChars that prints n characters as follows. The middle
character (or middle two characters if n is even) is an asterisk (*). All characters before the
asterisks are ‘<’. All characters after are ‘>’. Throw an error if n is not positive. (You do not
need to worry about printing an endl at the end.)

writeChars(1) “*”
writeChars(2) “**”
writeChars(4) “<**>”
writeChars(9) “<<<<*>>>>”

 void writeChars(int n) { ...

4. isMeasurable.
Write a function named isMeasurable that determines whether it is possible to measure out
the desired target amount with a given set of weights. For example, if a sample weights is
{1, 3}, you can measure a target of weight 2 by putting the 1 on the left and 3 on the
right.

isMeasurable(2, {1, 3}) true
isMeasurable(5, {1, 3}) false
isMeasurable(6, {2, 3, 7}) true

 bool isMeasurable(int target, Vector<int>& weights) { ...

5. waysToClimb.
Write a function named waysToClimb that returns the number of ways to climb the given
number of stairs if you can only move either one or two steps at a time. For example, there
are five ways to climb four steps: {1, 1, 1, 1}, {1, 1, 2}, {1, 2, 1}, {2, 1, 1}, {2, 2}. Throw an
error if steps isn’t positive.

waysToClimb(1) 1
waysToClimb(2) 2
waysToClimb(4) 5

 int waysToClimb(int steps) { ...

6. isSubsequence.
Write a function named isSubsequence that takes two strings and returns if the second
string is a subsequence of the first string. A string is a subsequence of another if it contains
the same letters in the same order, but not necessarily consecutively. You can assume both
strings are already lowercased.

isSubsequence(“computer”, “core”) false
isSubsequence(“computer”, “cope”) true
isSubsequence(“computer”, “computer”) true

 bool isSubsequence(string big, string small) { ...

7. Debugging Recursion.
The following function recursively finds the maximum integer in a Vector between two
indices (inclusive) by taking the maximum from the left half, the maximum in the right half,
and then returning the max of those two. For example, if a Vector variable named vec
contained the values {1, 2, 3, 2, 3, 4}, the call of recursiveMax(vec, 0, 2) looks at
the elements in indices 0, 1, and 2, and returns 3 because that’s the largest in those indices.
Can you find the bug?

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

int recursiveMax(Vector<int>& v, int left, int right) {
 if (left == right) {
 return v[left];
 } else if (left < right) {
 int middle = (left + right) / 2;
 int leftMax = recursiveMax(v, left, middle);
 int rightMax = recursiveMax(v, middle, right);
 if (leftMax > rightMax) {
 return leftMax;
 } else {
 return rightMax;
 }
 } else {
 throw “Invalid range.”;
 }
}

