
CS106B

Spring 2016 Cynthia Lee

Section 2 (Week 3) Handout
 Section problem authors include Marty Stepp and Jerry Cain.

Problem 1: Twice (Sets)

Write a function named twice that takes a vector of integers and returns a set containing all
the numbers in the vector that appear exactly twice. Bonus: do the same thing, but you are not
allowed to declare any kind of data structure other than sets.

Set<int> twice(Vector<int>& numbers) { ...

Problem 2: Reverse Map (Maps)

Write a function named reverseMap that takes a map from ints to strings, and returns a
map with the associations reversed.

For example, if a Map variable named map stores { 1: "a", 2: "b", 3: "c" }, the call of
reverseMap(map) should return { "a": 1, "b": 2, "c": 3 }. If there are duplicate
values (k1, v) and (k2, v) in the original map, your returned map may contain either
(v, k1) or (v, k2).

Map<string, int> reverseMap(Map<int, string>& map) { ...

Problem 3: Cannonballs (Recursion)

Write a function named cannonballs that returns the number of cannonballs in a square
pyramid of cannonballs of the given height. For example, in a square pyramid of height 3, the
bottom layer has 9 balls, the middle layer has 4, and there is one ball on top, so
cannonballs(3) returns 14. (You can assume that height won’t be negative).

int cannonballs(int height);

Problem 4: Reverse String (Recursion)

Write a function named reverseStr that takes a string and reverses it. For example, reversing
“Hello World” returns “dlroW olleH”.

string reverseStr(string s);

 2

Problem 5: Twiddles (Recursion)

Two English words are considered twiddles if the letters at each position are either the same,
neighboring letters, or next-to-neighboring letters. For instance, sparks and snarls are
twiddles. Their second and second-to-last characters are different, but p is just two past n in
the alphabet, and k comes just before l. A more dramatic example: craggy and eschew.
They have no letters in common, but craggy’s c, r, a, g, g, and y are -2, -1, -2, -1, 2, and
2 away from the e, s, c, h, e, and w in eschew. And just to be clear, a and z are not next to
each other in the alphabet—there’s no wrapping around at all.

Write a recursive procedure called listTwiddles, which accepts a string str and a
reference to an English language Lexicon, and prints out all those English words that just
happen to be str’s twiddles. You’ll probably want to write a wrapper function. (Note: any
word is considered to be a twiddle of itself, so it’s okay to print it.)

static void listTwiddles(const string& str, const Lexicon& lex);

Problem 6: Making Change (Recursion)

For this problem, implement the following function:

static int countWaysToMakeChange(const Vector<int>& denominations, int amount)

The countWaysToMakeChange routine recursively computes the number of ways to make
change for the specified amount given an unlimited number of coins of the specified
denominations. Download the lab starter code to work with the small test harness to exercise
your implementation. The test harness includes the following main function:

int main() {
 Vector<int> denominations;
 denominations += 25, 10, 5;
 cout << "Number of ways to make change for a dollar using " << denominations
 << ": " << countWaysToMakeChange(denominations, 100) << endl;
 denominations += 1;
 cout << "Number of ways to make change for a dollar using " << denominations
 << ": " << countWaysToMakeChange(denominations, 100) << endl;
 return 0;
}

Once properly implemented, the above main function should output the following:

Number of ways to make change for a dollar using {25, 10, 5}: 29
Number of ways to make change for a dollar using {25, 10, 5, 1}: 242

Of course, you’re free to cannibalize the test harness in any way you’d like if it’ll help confirm
your implementation is solid.

