
Programming Abstractions

Cynthia Lee

C S 106B

Today’s Topics

(first, finish up Inheritance/Polymorphism)

Sorting!

1. The warm-ups

 Selection sort

 Insertion sort

2. Let’s use a data structure!

 Heapsort

3. Divide & Conquer

 Merge Sort (aka Professor Sorting the Midterms Using TAs

and SLs Sort)

 Quicksort

Polymorphism examples

You can use the object's extra functionality by casting.

Employee *diane = new Lawyer("Diane", "Stanford", 5);
diane->vacationDays(); // ok
diane->sue("Cynthia"); // compiler error
((Lawyer*) diane)->sue("Cynthia"); // ok

Pro Tip: you should not cast a pointer into something that it is not!

• It will compile, but the code will crash (or behave unpredictably)

when you try to run it.

Employee *carlos = new Programmer("Carlos", 3);
carlos->code(); // compiler error
((Programmer*) carlos)->code("C++"); // ok
((Lawyer*) carlos)->sue("Cynthia"); // No!!! Compiles but crash!!

Rules for “virtual”: runtime calls

DerivedType * obj = new DerivedType();

If we call a method like this: obj->method(), only one thing could happen:

1. DerivedType’s implementation of method is called

BaseType * obj = new DerivedType();

If we call a method like this: obj->method(), two different things could

happen:

1. If method is not virtual, then BaseType’s implementation of method is

called

2. If method is virtual, then DerivedType’s implementation of method is

called

Rules for “virtual”: pure virtual

If a method of a class looks like this:

 virtual returntype method() = 0;

 then this method is a called “pure virtual” function

 and the class is called an “abstract class”

 Abstract classes are like Java interfaces

 You cannot do “= new Foo();” if Foo is abstract (just like Java

interfaces)

 ALSO, you cannot do “= new DerivedFoo();” if DerivedFoo extends

Foo and DerivedFoo does not implement all the pure virtual

methods of Foo

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Siamese * s = new Mammal;
cout << s->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Siamese * s = new Siamese;
cout << s->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Mammal;
cout << m->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Siamese;
cout << m->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Siamese;
m->scratchCouch();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Cat * c = new Siamese;
c->makeSound();

(A)“rawr”
(B)“meow”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

Selection Sort
A classic “My First Sorting Algorithm” sorting algorithm

Selection Sort

Compare the best-case and worst-

case costs of this algorithm (tight

Big-O characterization of each):

A. Best case = Worst case

B. Best case < Worst case

Why? Explain very specifically.

void sort(Vector<int> &vec) {
int n = vec.size();
// already-fully-sorted section grows
// 1 at a time from left to right
for (int lh = 0; lh < n; lh++) {

int rh = lh;
// find the min element in the
// entire unsorted section
for (int i = lh + 1; i < n; i++) {

// found new min?
if (vec[i] < vec[rh]) rh = i;

}
// swap min into sorted section
int tmp = vec[lh];
vec[lh] = vec[rh];
vec[rh] = tmp;

}
}

Bubble Sort
It’s not very good, famously so…

https://www.youtube.com/watch?v=k4RRi_ntQc8

(arguably better than Selection Sort though!)

14

https://www.youtube.com/watch?v=k4RRi_ntQc8

Insertion Sort
Another classic “Beginner” sorting algorithm

Insertion Sort

Compare the best-case and worst-

case costs of this algorithm (tight

Big-O characterization of each):

A. Best case = Worst case

B. Best case < Worst case

Why? Explain very specifically.

void sort(Vector<int> & vec) {
int n = vec.size();
// already-sorted section grows 1 at a
// time from left to right
for (int i = 1; i < n; i++) {

int j = i;
// does this item needs to move
// left to be in order?
while (j > 0 && vec[j-1] > vec[j]) {

// keep swapping this item with
// its left neighbor if it is
// smaller than the left neighbor
int tmp = vec[i];
vec[i] = vec[j];
vec[j] = tmp;
j--;

}
}

}

Heap Sort

Heapsort

Pretty simple!!

1. Take the unsorted array and insert each element into a heap priority

queue

2. While the queue is not empty, dequeue an element from the heap

priority queue

The elements come out of the priority queue in sorted order.

Fun fact: you don’t need extra array storage, you can do this in place in

the original array.

18

Professor’s Sorting Algorithm
Sorting in the “real world”

Preliminary Step:
We need a “combine two sorted piles” algorithm

Start: you have two piles, each of which is sorted

 Take the overall smallest element (smallest in

either pile) and add that one element to the

combined-sorted pile

 Repeat until the two starting piles are empty and

the combined-sorted pile is complete

 Towards the end, you might end up with one pile

already empty and the other not, so just move from

non-empty pile into combined-sorted pile

Preliminary Step:
We need a “combine two sorted piles” algorithm

Start: you have two piles, each of which is sorted

 Take the overall smallest element (smallest in

either pile) and add that one element to the

combined-sorted pile

 Repeat until the two starting piles are empty and

the combined-sorted pile is complete

 Towards the end, you might end up with one pile

already empty and the other not, so just move from

non-empty pile into combined-sorted pile

How

many

elements

do we

examine

to find the

overall

smallest

element?

How many steps does it take to merge two sorted sub-
piles, A and B?

In other words, how long does it take to do the “combine two sorted
piles” algorithm on piles A and B? (best/tight answer)

A. O(log(|A|+|B|)) steps

B. O(|A|+|B|) steps

C. O(|A+B|)2 steps

D. O(|A|2 + |B|2)steps

E. Other/none/more than one

Professor’s sorting algorithm:

Stanford CS classes can have more than 500 students! Sorting the

midterms alphabetically to prepare for handing them back is a non-

trivial task. Luckily, I don’t have to do it myself…

1. Find two grad students, give each half of the unsorted midterms

2. Tell the grad students to sort their own pile, then give it back

3. Combine the two piles into one sorted pile, using our simple combine

algorithm

4. Done!

Grad student’s sorting algorithm:

Sorting ~250 exams is still a non-trivial task! Luckily, the grad

students don’t have to do it themselves!

1. Find two SLs, give each half of the unsorted midterms

2. Tell the SLs to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple

combine algorithm

4. Done! (give your sorted pile to professor)

SL’s sorting algorithm:

1. Find two students, give each half of the unsorted midterms

2. Tell the students to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple combine

algorithm

4. Done! (give sorted pile to grad student)

Student’s sorting algorithm:

1. Find two visiting prospective freshmen (“profros”), give each

half of the unsorted midterms

2. Tell the profros to sort their own pile, then give it back to you

3. Combine the two piles into one sorted pile, using our simple combine

algorithm

4. Done! (give sorted pile to SL)

ProFro’s sorting algorithm:

1. By now, the pile only has zero or one exam in it (for

the sake of this example, assume the starting number of

exams makes this true at this point)

2. Done! (give sorted pile to student)

Consider an arbitrarily chosen (generic) particular exam and mentally
track its progress throughout the algorithm.

How many times does your exam pass through the
merge algorithm?

A. 1 time

B. 2 times

C. Θ(logn) times

D. Θ(n) times

E. Other/none/more than one

(Recall Θ means the same as O but where the time is a best

match, not a potentially distant upper bound.)

BigO Analysis of Mergesort

Every paper is merged log(n) times

 This is the number of times we can divide the stack of n

papers by 2 before we can’t divide anymore

There are n papers

O(nlogn)

Merge Sort runtime intuition

Merge sort performs O(N) operations on each level. (width)

 Each level splits the data in 2, so there are log2 N levels. (height)

 Product of these = N * log2 N = O(N log N). (area)

 Example: N = 32. Performs ~ log2 32 = 5 levels of N operations each:

32

16

8

4

2

1

width = N

h
ei

gh
t

=
lo

g 2
N

Merge Sort

 Compare the best case and worst case of Merge sort (tight Big-O of

each):

A. Best case = Worst case

B. Best case < Worst case

Why? Explain very specifically in terms of the structure of the code.

Quicksort

Divide & Conquer

Imagine we want students to line up in alphabetical order to pick
up their midterms, which (as we know from Professor sorting
algorithm!) are sorted in alphabetical order.

1. “Everybody in the first half of the alphabet, go over there!”
“Everybody in the second half, go over there!”

› At this point, we at least have some kind of division based
on ordering, but it’s very crude. Each of the two “over there”
groups is completely unsorted within the group, but...

2. …at least now you have two groups that are each smaller
and easier to sort, so recursively sort each half.

That’s it!*

* ok, actually there are some details…

Divide & Conquer

Imagine we want students to line up in alphabetical order to pick
up their midterms, which (as we know from Professor sorting
algorithm!) are sorted in alphabetical order.

1. “Everybody in the first half of the alphabet, go over there!”
“Everybody in the second half, go over there!”

› At this point, we at least have some kind of division based
on ordering, but it’s very crude. Each of the two “over there”
groups is completely unsorted within the group, but...

2. …at least now you have two groups that are each smaller
and easier to sort, so recursively sort each half.

That’s it!*

* ok, actually there are some details…

Rather than doing the work of finding

the actual median, we just choose an

arbitrary or random element to be the

divider. Say, the first array index of

the group, or randomly select an

array index from the group.

Quicksort

 Consider the best case and worst case of Quicksort (best/tight

characterization in each case)

A. Best case = Worst case

B. Best case < Worst case

Why? Explain very specifically in terms of the structure of the code.

