
Programming Abstractions

Cynthia Lee

C S 106B

Inheritance Topics

Inheritance

 The basics

› Example: Stanford GObject class

 Polymorphism

Inheritance

What? Why? How?

Inheritance: what?

is-a relationship: A hierarchical connection where one category can

be treated as a specialized version of another.

 every rectangle is a shape

 every lion is an animal

type hierarchy: A set of data types

connected by is-a relationships

that can share common code.

• Re-use!

Inheritance: why?

 Remember the #1 rule of computer scientists:

› Computer scientists are super lazy
› …in a good way!

 We want to reuse code and work as much as possible

 You’ve already seen this going back to the very start of your CS
education:

› Loops and Functions (instead of copy&paste to repeat code)

› Arrays (instead of copy&paste to make 100 named variables)

› Data structures (same idea as arrays but more expressive)

 Inheritance is another way of organizing smart reuse of code

5

Inheritance: how?

inheritance: A way to form new classes based on existing classes,

taking on their attributes/behavior.

 a way to group related classes

 a way to share code between two or more classes

One class can extend another, absorbing its data/behavior.

Inheritance vocab

 superclass (base class):

Parent class that is being

extended.

 subclass (derived class):

Child class that inherits from

the superclass.

› Subclass gets a copy of

every field and method from

superclass.

› Subclass can add its own

behavior, and/or change

inherited behavior.

Inheritance Example
Stanford Library G-Object family of classes

Gob-ject

Behind the scenes…

 We’ve always told you not to worry about

the graphics parts of your assignments.

› “Just call this BoggleGUI function…”

 Now you can go ahead and take a look!

9

GObject hierarchy

The Stanford C++ library contains a hierarchy of graphical
objects based on a common base class named GObject.

 GArc

 GImage

 GLabel

 GLine

 GOval

 GPolygon

 GRect

 G3DRect

 GRoundRect

hi

GObject members

GObject defines the state and behavior common to all shapes:
 contains(x, y)

 get/setColor()

 getHeight(), getWidth()

 get/setLocation(), get/setX(), get/setY()

 move(dx, dy)

 setVisible(visible)

The subclasses add state and behavior unique to them:

Glabel GLine GPolygon GOval
get/setFont get/setStartPoint addEdge getSize

get/setLabel get/setEndPoint addVertex get/setFillColor

get/setFillColor

...

double x;
double y;
double lineWidth;
std::string color;
bool visible;

GObject members

GObject defines the state and behavior common to all shapes:
 contains(x, y)

 get/setColor()

 getHeight(), getWidth()

 get/setLocation(), get/setX(), get/setY()

 move(dx, dy)

 setVisible(visible)

The subclasses add state and behavior unique to them:

Glabel GLine GPolygon GOval
get/setFont get/setStartPoint addEdge getSize

get/setLabel get/setEndPoint addVertex get/setFillColor

get/setFillColor

...

double x;
double y;
double lineWidth;
std::string color;
bool visible;

GObject hierarchy

The Stanford C++ library contains a hierarchy of graphical
objects based on a common base class named GObject.

 GArc

 GImage

 GLabel

 GLine

 GOval

 GPolygon

 GRect

 G3DRect

 GRoundRect

hi

Q: Rectangle is-a Polygon, right?

Why doesn’t it inherit from Polygon??

Although true in geometry, they don’t

share many fields and methods in

this case.

Inheritance Example
Your turn: let’s write an Employee family of classes

Example: Employees

Imagine a company with the following employee regulations:

 All employees work 40 hours / week

 Employees make $40,000 per year plus $500 for each year worked

› Except for lawyers who get twice the usual pay, and programmers who get the same $40k

base but $2000 for each year worked

 Employees have 2 weeks of paid vacation days per year

› Except for programmers who get an extra week

Each type of employee has some unique behavior:

 Lawyers know how to sue

 Programmers know how to write code

16

Employee class

// Employee.h
class Employee {
public:

Employee(string name,
int years);

virtual int hours();
virtual string name();
virtual double salary();
virtual int vacationDays();
virtual int years();

private:
string m_name;
int m_years;

};

// Employee.cpp
Employee::Employee(string name, int years) {

m_name = name;
m_years = years;

}

int Employee::hours() {
return 40;

}

string Employee::name() {
return m_name;

}

double Employee::salary() {
return 40000.0 + (500 * m_years);

}

int Employee::vacationDays() {
return 10;

}

int Employee::years() {
return m_years;

}

Exercise: Employees

Exercise: Implement classes Lawyer and Programmer.

 A Lawyer remembers what law school he/she went to.

 Lawyers make twice as much salary as normal employees.

 Lawyers know how to sue people (unique behavior).

 Lawyers put “, Esq.” at the end of their name.

 Programmers make the same base salary as normal employees,

but they earn a bonus of $2k/year instead of $500/year.

 Programmers know how to write code (unique behavior).

Inheritance syntax

class Name : public SuperclassName {

 Example:

class Lawyer : public Employee {
...

};

By extending Employee, each Lawyer object now:

 receives a hours, name, salary, vacationDays, and years method

automatically

 can be treated as an Employee by client code

Call superclass c'tor

SubclassName::SubclassName(params)

: SuperclassName(params) {

statements;

}

To call a superclass constructor from subclass constructor, use
an initialization list, with a colon after the constructor
declaration.

 Example:

Lawyer::Lawyer(string name, string lawSchool, int years)
: Employee(name, years) {

// calls Employee constructor first
m_lawSchool = lawSchool;

}

Your turn: inheritance

string Lawyer::name() {
???

}

For adding “, Esq.” to the name, which of the
following could work?

A. return m_name + ", Esq.";
B. return name() + ", Esq.";
C. return Employee::name() + ", Esq.";
D. None of the above

E. More than one of the above

// Employee.h
class Employee {
public:

Employee(string name,
int years);

int hours();
string name();
double salary();
int vacationDays();
string vacationForm();
int years();

private:
string m_name;
int m_years;

};

Call superclass member

SuperclassName::memberName(params)

To call a superclass overridden member from subclass member.

 Example:

double Lawyer::salary() { // paid twice as much
return Employee::salary() * 2;

}

 Note: Subclass cannot access private members of the superclass.

 Note: You only need to use this syntax when the superclass's member

has been overridden.

› If you just want to call one member from another, even if that member
came from the superclass, you don't need to write Superclass:: .

Polymorphism
Start with how

Polymorphism

polymorphism: Ability for the same code to be used with different types of objects

and behave differently with each.

 Templates provide a kind of compile-time polymorphism.

› Grid<int> or Grid<string> will output different things for myGrid[0][0], but

we can predict at compile time which it will do

 Inheritance provides run-time polymorphism.

› someEmployee.salary() will behave differently at runtime depending on what

type of employee—may not be able to predict at compile time which it is

Polymorphism

A pointer of type T can point to any subclass of T.

Employee *neha = new Programmer("Neha", 2);
Employee *diane = new Lawyer("Diane", "Stanford", 5);
Programmer *cynthia = new Programmer("Cynthia", 10);

 Why would you do this?

› Handy if you want to have a function that works on any Employee, but takes

advantage of custom behavior by specific employee type:

void doMonthlyPaycheck(Employee *employee) {

cout << "You are now $" << employee->salary()/12 << " wealthier!" << endl;

}

Polymorphism

A pointer of type T can point to any subclass of T.

Employee *neha = new Programmer("Neha", 2);
Employee *diane = new Lawyer("Diane", "Stanford", 5);
Programmer *cynthia = new Programmer("Cynthia", 10);

 When a member function is called on diane, it behaves as a Lawyer.

› diane->salary();

› (This is because all the employee functions are declared virtual.)

 You can not call any Lawyer-only members on diane (e.g. sue).

› diane->sue(); // will NOT compile!

 You can call any Programmer-only members on cynthia (e.g. code).

› cynthia->code("Java"); // ok!

Polymorphism examples

You can use the object's extra functionality by casting.

Employee *diane = new Lawyer("Diane", "Stanford", 5);
diane->vacationDays(); // ok
diane->sue("Cynthia"); // compiler error
((Lawyer*) diane)->sue("Cynthia"); // ok

Pro Tip: you should not cast a pointer into something that it is not!

• It will compile, but the code will crash (or behave unpredictably)

when you try to run it.

Employee *carlos = new Programmer("Carlos", 3);
carlos->code(); // compiler error
((Programmer*) carlos)->code("C++"); // ok
((Lawyer*) carlos)->sue("Cynthia"); // No!!! Compiles but crash!!

Rules for “virtual”: runtime calls

DerivedType * obj = new DerivedType();

If we call a method like this: obj->method(), only one thing could happen:

1. DerivedType’s implementation of method is called

BaseType * obj = new DerivedType();

If we call a method like this: obj->method(), two different things could

happen:

1. If method is not virtual, then BaseType’s implementation of method is

called

2. If method is virtual, then DerivedType’s implementation of method is

called

Rules for “virtual”: pure virtual

If a method of a class looks like this:

 virtual returntype method() = 0;

 then this method is a called “pure virtual” function

 and the class is called an “abstract class”

 Abstract classes are like Java interfaces

 You cannot do “= new Foo();” if Foo is abstract (just like Java

interfaces)

 ALSO, you cannot do “= new DerivedFoo();” if DerivedFoo extends

Foo and DerivedFoo does not implement all the pure virtual

methods of Foo

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Siamese * s = new Mammal;
cout << s->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Siamese * s = new Siamese;
cout << s->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Mammal;
cout << m->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Siamese;
cout << m->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Siamese;
m->scratchCouch();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Cat * c = new Siamese;
c->makeSound();

(A)“rawr”
(B)“meow”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

