
Programming Abstractions

Cynthia Lee

C S 106B

Inheritance Topics

Inheritance

 The basics

› Example: Stanford GObject class

 Polymorphism

Inheritance

What? Why? How?

Inheritance: what?

is-a relationship: A hierarchical connection where one category can

be treated as a specialized version of another.

 every rectangle is a shape

 every lion is an animal

type hierarchy: A set of data types

connected by is-a relationships

that can share common code.

• Re-use!

Inheritance: why?

 Remember the #1 rule of computer scientists:

› Computer scientists are super lazy
› …in a good way!

 We want to reuse code and work as much as possible

 You’ve already seen this going back to the very start of your CS
education:

› Loops and Functions (instead of copy&paste to repeat code)

› Arrays (instead of copy&paste to make 100 named variables)

› Data structures (same idea as arrays but more expressive)

 Inheritance is another way of organizing smart reuse of code

5

Inheritance: how?

inheritance: A way to form new classes based on existing classes,

taking on their attributes/behavior.

 a way to group related classes

 a way to share code between two or more classes

One class can extend another, absorbing its data/behavior.

Inheritance vocab

 superclass (base class):

Parent class that is being

extended.

 subclass (derived class):

Child class that inherits from

the superclass.

› Subclass gets a copy of

every field and method from

superclass.

› Subclass can add its own

behavior, and/or change

inherited behavior.

Inheritance Example
Stanford Library G-Object family of classes

Gob-ject

Behind the scenes…

 We’ve always told you not to worry about

the graphics parts of your assignments.

› “Just call this BoggleGUI function…”

 Now you can go ahead and take a look!

9

GObject hierarchy

The Stanford C++ library contains a hierarchy of graphical
objects based on a common base class named GObject.

 GArc

 GImage

 GLabel

 GLine

 GOval

 GPolygon

 GRect

 G3DRect

 GRoundRect

hi

GObject members

GObject defines the state and behavior common to all shapes:
 contains(x, y)

 get/setColor()

 getHeight(), getWidth()

 get/setLocation(), get/setX(), get/setY()

 move(dx, dy)

 setVisible(visible)

The subclasses add state and behavior unique to them:

Glabel GLine GPolygon GOval
get/setFont get/setStartPoint addEdge getSize

get/setLabel get/setEndPoint addVertex get/setFillColor

get/setFillColor

...

double x;
double y;
double lineWidth;
std::string color;
bool visible;

GObject members

GObject defines the state and behavior common to all shapes:
 contains(x, y)

 get/setColor()

 getHeight(), getWidth()

 get/setLocation(), get/setX(), get/setY()

 move(dx, dy)

 setVisible(visible)

The subclasses add state and behavior unique to them:

Glabel GLine GPolygon GOval
get/setFont get/setStartPoint addEdge getSize

get/setLabel get/setEndPoint addVertex get/setFillColor

get/setFillColor

...

double x;
double y;
double lineWidth;
std::string color;
bool visible;

GObject hierarchy

The Stanford C++ library contains a hierarchy of graphical
objects based on a common base class named GObject.

 GArc

 GImage

 GLabel

 GLine

 GOval

 GPolygon

 GRect

 G3DRect

 GRoundRect

hi

Q: Rectangle is-a Polygon, right?

Why doesn’t it inherit from Polygon??

Although true in geometry, they don’t

share many fields and methods in

this case.

Inheritance Example
Your turn: let’s write an Employee family of classes

Example: Employees

Imagine a company with the following employee regulations:

 All employees work 40 hours / week

 Employees make $40,000 per year plus $500 for each year worked

› Except for lawyers who get twice the usual pay, and programmers who get the same $40k

base but $2000 for each year worked

 Employees have 2 weeks of paid vacation days per year

› Except for programmers who get an extra week

Each type of employee has some unique behavior:

 Lawyers know how to sue

 Programmers know how to write code

16

Employee class

// Employee.h
class Employee {
public:

Employee(string name,
int years);

virtual int hours();
virtual string name();
virtual double salary();
virtual int vacationDays();
virtual int years();

private:
string m_name;
int m_years;

};

// Employee.cpp
Employee::Employee(string name, int years) {

m_name = name;
m_years = years;

}

int Employee::hours() {
return 40;

}

string Employee::name() {
return m_name;

}

double Employee::salary() {
return 40000.0 + (500 * m_years);

}

int Employee::vacationDays() {
return 10;

}

int Employee::years() {
return m_years;

}

Exercise: Employees

Exercise: Implement classes Lawyer and Programmer.

 A Lawyer remembers what law school he/she went to.

 Lawyers make twice as much salary as normal employees.

 Lawyers know how to sue people (unique behavior).

 Lawyers put “, Esq.” at the end of their name.

 Programmers make the same base salary as normal employees,

but they earn a bonus of $2k/year instead of $500/year.

 Programmers know how to write code (unique behavior).

Inheritance syntax

class Name : public SuperclassName {

 Example:

class Lawyer : public Employee {
...

};

By extending Employee, each Lawyer object now:

 receives a hours, name, salary, vacationDays, and years method

automatically

 can be treated as an Employee by client code

Call superclass c'tor

SubclassName::SubclassName(params)

: SuperclassName(params) {

statements;

}

To call a superclass constructor from subclass constructor, use
an initialization list, with a colon after the constructor
declaration.

 Example:

Lawyer::Lawyer(string name, string lawSchool, int years)
: Employee(name, years) {

// calls Employee constructor first
m_lawSchool = lawSchool;

}

Your turn: inheritance

string Lawyer::name() {
???

}

For adding “, Esq.” to the name, which of the
following could work?

A. return m_name + ", Esq.";
B. return name() + ", Esq.";
C. return Employee::name() + ", Esq.";
D. None of the above

E. More than one of the above

// Employee.h
class Employee {
public:

Employee(string name,
int years);

int hours();
string name();
double salary();
int vacationDays();
string vacationForm();
int years();

private:
string m_name;
int m_years;

};

Call superclass member

SuperclassName::memberName(params)

To call a superclass overridden member from subclass member.

 Example:

double Lawyer::salary() { // paid twice as much
return Employee::salary() * 2;

}

 Note: Subclass cannot access private members of the superclass.

 Note: You only need to use this syntax when the superclass's member

has been overridden.

› If you just want to call one member from another, even if that member
came from the superclass, you don't need to write Superclass:: .

Polymorphism
Start with how

Polymorphism

polymorphism: Ability for the same code to be used with different types of objects

and behave differently with each.

 Templates provide a kind of compile-time polymorphism.

› Grid<int> or Grid<string> will output different things for myGrid[0][0], but

we can predict at compile time which it will do

 Inheritance provides run-time polymorphism.

› someEmployee.salary() will behave differently at runtime depending on what

type of employee—may not be able to predict at compile time which it is

Polymorphism

A pointer of type T can point to any subclass of T.

Employee *neha = new Programmer("Neha", 2);
Employee *diane = new Lawyer("Diane", "Stanford", 5);
Programmer *cynthia = new Programmer("Cynthia", 10);

 Why would you do this?

› Handy if you want to have a function that works on any Employee, but takes

advantage of custom behavior by specific employee type:

void doMonthlyPaycheck(Employee *employee) {

cout << "You are now $" << employee->salary()/12 << " wealthier!" << endl;

}

Polymorphism

A pointer of type T can point to any subclass of T.

Employee *neha = new Programmer("Neha", 2);
Employee *diane = new Lawyer("Diane", "Stanford", 5);
Programmer *cynthia = new Programmer("Cynthia", 10);

 When a member function is called on diane, it behaves as a Lawyer.

› diane->salary();

› (This is because all the employee functions are declared virtual.)

 You can not call any Lawyer-only members on diane (e.g. sue).

› diane->sue(); // will NOT compile!

 You can call any Programmer-only members on cynthia (e.g. code).

› cynthia->code("Java"); // ok!

Polymorphism examples

You can use the object's extra functionality by casting.

Employee *diane = new Lawyer("Diane", "Stanford", 5);
diane->vacationDays(); // ok
diane->sue("Cynthia"); // compiler error
((Lawyer*) diane)->sue("Cynthia"); // ok

Pro Tip: you should not cast a pointer into something that it is not!

• It will compile, but the code will crash (or behave unpredictably)

when you try to run it.

Employee *carlos = new Programmer("Carlos", 3);
carlos->code(); // compiler error
((Programmer*) carlos)->code("C++"); // ok
((Lawyer*) carlos)->sue("Cynthia"); // No!!! Compiles but crash!!

Rules for “virtual”: runtime calls

DerivedType * obj = new DerivedType();

If we call a method like this: obj->method(), only one thing could happen:

1. DerivedType’s implementation of method is called

BaseType * obj = new DerivedType();

If we call a method like this: obj->method(), two different things could

happen:

1. If method is not virtual, then BaseType’s implementation of method is

called

2. If method is virtual, then DerivedType’s implementation of method is

called

Rules for “virtual”: pure virtual

If a method of a class looks like this:

 virtual returntype method() = 0;

 then this method is a called “pure virtual” function

 and the class is called an “abstract class”

 Abstract classes are like Java interfaces

 You cannot do “= new Foo();” if Foo is abstract (just like Java

interfaces)

 ALSO, you cannot do “= new DerivedFoo();” if DerivedFoo extends

Foo and DerivedFoo does not implement all the pure virtual

methods of Foo

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Siamese * s = new Mammal;
cout << s->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Siamese * s = new Siamese;
cout << s->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Mammal;
cout << m->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Siamese;
cout << m->toString();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Mammal * m = new Siamese;
m->scratchCouch();

(A)“Mammal”
(B)“Cat”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

class Mammal {
public:

virtual void makeSound() = 0;
string toString() { return “Mammal”; }

};
class Cat : public Mammal {
public:

virtual void makeSound() { cout << “rawr” << endl; }
string toString() { return “Cat”; }

};
class Siamese : public Cat {
public:

virtual void makeSound() { cout << “meow” << endl; }
string toString() { return “Siamese”; }
virtual void scratchCouch() { cout << “scraaaatch” << endl; }

};

What is printed?

Cat * c = new Siamese;
c->makeSound();

(A)“rawr”
(B)“meow”
(C)“Siamese”
(D) Gives an error (identify compiler or crash)
(E) Other/none/more

