
Programming Abstractions

Cynthia Lee

C S 106B

Graphs Topics

Graphs!

1. Basics

 What are they? How do we represent them?

2. Theorems

 What are some things we can prove about graphs?

3. Breadth-first search on a graph

 Spoiler: just a very, very small change to tree version

4. Dijkstra’s shortest paths algorithm

 Spoiler: just a very, very small change to BFS

5. A* shortest paths algorithm (continued)

 Spoiler: just a very, very small change to Dijkstra’s

6. Minimum Spanning Tree

 Kruskal’s algorithm

A* Solving Super Mario (video)
https://youtu.be/DlkMs4ZHHr8

https://youtu.be/DlkMs4ZHHr8

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

???

2 +
5?

What goes in the ?

A. 2 + 5?

B. 1 + 6?

C. 2 + 4?

D. Other/none/more

???

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2 +
3?

2 +
5?

A*: enqueue neighbors.

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2 +
3?

2 +
5?

Now we’re done with the
green “1” node’s turn.

What is the next node to
turn green? (and what
would it be if this were
Dijkstra’s?)

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2

2 +
5?

A*: dequeue next lowest priority value node. Notice we are making a
straight line right for the end point, not wasting time with other directions.

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2

2 +
5?

3 +
4?

3 +
4?

A*: enqueue neighbors—uh-oh, wall blocks us from
continuing forward.

1 21

2

21

1

3

32
3 +
8?

3 +
8?

2
3 +
8?

3 +
8?

4

5 +
6?

2

3 +
8?

3

4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5

6 +
5?

6

7 +
4?

5

6 +
5?

7
8 +
1?

7

8 +
3?

8 +
3?

8

7 +
2?

6

7 +
4?

7 +
2?

A*: eventually figures out how to go around the wall, with
some waste in each direction.

1 21

2

21

1

3

32

2

42 3

2

2

3 4

5 6

5

7

7

8

6

For Comparison: What Dijkstra's Algorithm Would Have Searched

64

4 53

3

3

3

3

3

3

5

5

64

4

4

4

4

4

4

4

4

4 55

5

5

5

5

5

5

56

6

6

6

6

6 6

6

7

7

7

78

8 7

7

7

7

7

7 8

8

8

8

8

8

8

8 9?

9?

9?

9?

9?

9?

9?

9?

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority h(s,t).
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L + h(v,t).

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L + h(v,t).

A* Search

A* Solving Super Mario (video)
https://youtu.be/DlkMs4ZHHr8

https://youtu.be/DlkMs4ZHHr8

Minimum Spanning Tree

B D

ECA

F

How many distinct minimum

spanning trees are in this

graph?

A. 0-1

B. 2-3

C.4-5

D.6-7

E. >7

3

3

1

3

3

7

Edges:

(A,B)=1

(A,C)=3

(B,C)=6

(B,D)=3

(C,E)=3

(D,E)=3

(D,F)=7

Prim’s Algorithm

Prim’s algorithm

Arbitrarily choose start vertex

Add start vertex to MST

While vertices in MST < total vertices:

 Examine all edges that leave the current MST

 Choose the smallest one

 Add the end vertex of that edge to the MST

Prim’s algorithm

Kruskal’s Algorithm

Kruskal’s algorithm

Remove all edges from graph

Place all edges in a PQ based on length/weight

While !PQ.isEmpty():

 Dequeue edge

 If the edge connects previous disconnected

nodes or groups of nodes, keep the edge

 Otherwise discard the edge

Kruskal’s algorithm

Kruskal’s algorithm

Remove all edges from graph

Place all edges in a PQ based on length/weight

While !PQ.isEmpty():

 Dequeue edge

 If the edge connects previous disconnected

nodes or groups of nodes, keep the edge

 Otherwise discard the edge

Efficiency of

this step is

key

Cluster management questions

The assignment handout asks you to consider questions such as:

 How will you keep track of which nodes are in each cluster?

 How will you determine which cluster a node belongs to?

 How will you merge together two clusters?

Cluster management strategies
[watch lecture for whiteboard hints]

The Good Will Hunting Problem

Video Clip

https://www.youtube.com/watch?v=N7b0cLn-wHU

https://www.youtube.com/watch?v=N7b0cLn-wHU

“Draw all the homeomorphically irreducible trees with n=10.”

“Draw all the homeomorphically irreducible
trees with n=10.”

In this case “trees” simply means graphs with no cycles

“with n = 10” (i.e., has 10 nodes)

“homeomorphically irreducible”

 No nodes of degree 2 allowed in your solutions

› For this problem, nodes of degree 2 are useless in

terms of tree structure—they just act as a blip on an

edge—and are therefore banned

 Have to be actually different

› Ignore superficial changes in rotation or angles of

drawing

