Programming Abstractions

CS106B

Cynthia Lee

Graphs Topics

Graphs!

- 1. Basics
 - What are they? How do we represent them?
- 2. Theorems
 - What are some things we can prove about graphs?
- 3. Breadth-first search on a graph
 - Spoiler: just a very, very small change to tree version
- 4. Dijkstra's shortest paths algorithm
 - Spoiler: just a very, very small change to BFS
- **5.** A* shortest paths algorithm
 - Spoiler: just a very, very small change to Dijkstra's
- **6.** Minimum Spanning Tree
 - Kruskal's algorithm

Dijkstra's Algorithm

- Split nodes apart into three groups:
- Green nodes, where we already have the shortest path;
- Gray nodes, which we have never seen; and
- Yellow nodes that we still need to process.
 - Dijkstra's algorithm works as follows:
 - Mark all nodes gray except the start node, which is yellow and has cost 0.
 - Until no yellow nodes remain:
 - Choose the yellow node with the lowest total cost.
 - Mark that node green.
 - Mark all its gray neighbors yellow and with the appropriate cost.
 - Update the costs of all adjacent yellow nodes by considering the path through the current node.

An Important Note

- The version of Dijkstra's algorithm I have just described is not the same as the version described in the course reader.
- This version is more complex than the book's version, but is much faster.
- THIS IS THE VERSION YOU MUST USE ON YOUR TRAILBLAZER ASSIGNMENT!

How Dijkstra's Works

- Dijkstra's algorithm works by incrementally computing the shortest path to intermediary nodes in the graph in case they prove to be useful.
- Most of these nodes are completely in the wrong direction.
- No "big-picture" conception of how to get to the destination the algorithm explores outward in all directions.
- Could we give the algorithm a hint?

Dijkstra's: SPIN analysis (shoutout to GSB students)

Situation:

 Dijkstra's algorithm works by incrementally computing the shortest path to intermediary nodes in the graph <u>in case</u> they prove to be useful.

Problem:

• No big-picture conception of how to get to the destination – the algorithm explores outward in all directions, "in case."

Implication:

 Most of these explored nodes will end up being in completely the wrong direction.

. Need:

Could we give the algorithm a "hint" of which direction to go?

A* and Dijkstra's

Close cousins

Heuristics

- In the context of graph searches, a heuristic function is a function that guesses the distance from some known node to the destination node.
- The guess doesn't have to be correct, but it should try to be as accurate as possible.
- Examples: For Google Maps, a heuristic for estimating distance might be the straight-line "as the crow flies" distance.

Admissible Heuristics

- A heuristic function is called an admissible heuristic if it never overestimates the distance from any node to the destination.
- In other words:
 - predicted-distance ≤ actual-distance

Why Heuristics Matter

- We can modify Dijkstra's algorithm by introducing heuristic functions.
- Given any node u, there are two associated costs:

- The actual distance from the start node s.
- The heuristic distance from u to the end node t.
- Key idea: Run Dijkstra's algorithm, but use the following priority in the priority queue:
 - priority(u) = distance(s, u) + heuristic(u, t)
- This modification of Dijkstra's algorithm is called the A* search algorithm.

A* Search

- As long as the heuristic is admissible (and satisfies one other technical condition), A* will always find the shortest path from the source to the destination node.
- Can be dramatically faster than Dijkstra's algorithm.
- Focuses work in areas likely to be productive.
- Avoids solutions that appear worse until there is evidence they may be appropriate.

- Mark all nodes as gray.
- Mark the initial node s as yellow and at candidate distance 0.
- Enqueue s into the priority queue with priority 0.
- While not all nodes have been visited:
- Dequeue the lowest-cost node *u* from the priority queue.
- Color u green. The candidate distance d that is currently stored for node u is the length of the shortest path from s to u.
- If *u* is the destination node *t*, you have found the shortest path from *s* to *t* and are done.
- For each node v connected to u by an edge of length L:
 - If v is gray:
 - Color **v** yellow.
 - Mark v's distance as d + L.
 - Set v's parent to be u.
 - Enqueue v into the priority queue with priority d + L.
 - If v is yellow and the candidate distance to v is greater than d + L:
 - Update v's candidate distance to be d + L.
 - Update v's parent to be u.
 - Update v's priority in the priority queue to d + L.

Dijkstra's Algorithm

- Mark all nodes as gray.
- Mark the initial node s as yellow and at candidate distance 0.
- A* Search

- Enqueue s into the priority queue with priority h(s,t).
- While not all nodes have been visited:
- Dequeue the lowest-cost node u from the priority queue.
- Color u green. The candidate distance d that is currently stored for node u is the length of the shortest path from s to u.
- If *u* is the destination node *t*, you have found the shortest path from *s* to *t* and are done.
- For each node v connected to u by an edge of length L:
 - If v is gray:
 - Color **v** yellow.
 - Mark v's distance as d + L.
 - Set v's parent to be u.
 - Enqueue v into the priority queue with priority d + L + h(v,t).
 - If v is yellow and the candidate distance to v is greater than d + L:
 - Update v's candidate distance to be d + L.
 - Update v's parent to be u.
 - Update v's priority in the priority queue to d + L + h(v,t).

A* on two points where the heuristic is slightly misleading due to a wall blocking the way

A* starts with start node yellow, other nodes grey.

A*: dequeue start node, turns green.

A*: enqueue neighbors with candidate distance + heuristic distance as the priority value.

A*: dequeue min-priority-value node.

A*: enqueue neighbors.

A*: dequeue next lowest priority value node. Notice we are making a straight line right for the end point, not wasting time with other directions. **5?** 1+ 2 + **5?**

A*: enqueue neighbors—uh-oh, wall blocks us from continuing forward.

A*: eventually figures out how to go around the wall, with some waste in each direction.

			3+	4+	5 +	6+	7 +				
		_	8?	7?	6?	5 ?	4?				
		3 + 8?	2	3	4	5	6	7 + 2?			
		2	1	2	3		7 + 2?				
3 + 8?	2	1	\bigstar	1	2		8	\bigstar			
	3 + 8?	2	1	2	3		7	8 + 1?			
		3 + 8?	2	3	4	5	6	7	8 + 3?		
			3 +	4 +	5 +	6+	7 +	8 +			
			8?	7?	6?	5?	4?	3?			

For Comparison: What Dijkstra's Algorithm Would Have Searched

8	7	6	5	4	5	6	7	8	9?			
7	6	5	4	3	4	5	6	7	8	9?		
6	5	4	3	2	3	4	5	6	7	8	9?	
5	4	3	2	1	2	3		7	8	9?		
4	3	2	1	*	1	2		8	\bigstar			
5	4	3	2	1	2	3		7	8	9?		
6	5	4	3	2	3	4	5	6	7	8	9?	
7	6	5	4	3	4	5	6	7	8	9?		
8	7	6	5	4	5	6	7	8	9?			

- Mark all nodes as gray.
- Mark the initial node s as yellow and at candidate distance 0.
- Enqueue s into the priority queue with priority 0.
- While not all nodes have been visited:
- Dequeue the lowest-cost node *u* from the priority queue.
- Color u green. The candidate distance d that is currently stored for node u is the length of the shortest path from s to u.
- If *u* is the destination node *t*, you have found the shortest path from *s* to *t* and are done.
- For each node v connected to u by an edge of length L:
 - If \mathbf{v} is gray:
 - Color **v** yellow.
 - Mark v's distance as d + L.
 - Set v's parent to be u.
 - Enqueue v into the priority queue with priority d + L.
 - If v is yellow and the candidate distance to v is greater than d + L:
 - Update v's candidate distance to be d + L.
 - Update v's parent to be u.
 - Update v's priority in the priority queue to d + L.

- Mark all nodes as gray.
- Mark the initial node s as yellow and at candidate distance 0.
- A* Search

- Enqueue s into the priority queue with priority h(s,t).
- While not all nodes have been visited:
- Dequeue the lowest-cost node *u* from the priority queue.
- Color u green. The candidate distance d that is currently stored for node u is the length of the shortest path from s to u.
- If *u* is the destination node *t*, you have found the shortest path from *s* to *t* and are done.
- For each node v connected to u by an edge of length L:
 - If v is gray:
 - Color **v** yellow.
 - Mark v's distance as d + L.
 - Set v's parent to be u.
 - Enqueue v into the priority queue with priority d + L + h(v,t).
 - If v is yellow and the candidate distance to v is greater than d + L:
 - Update v's candidate distance to be d + L.
 - Update v's parent to be u.
 - Update v's priority in the priority queue to d + L + h(v,t).

Minimum Spanning Tree

A **spanning tree** in an undirected graph is a set of edges with no cycles that connects all nodes.

A minimum spanning tree (or MST) is a spanning tree with the least total cost.

How many distinct minimum spanning trees are in this graph?

A. 0-1

D. 6-7

B. 2-3

E. >7

C.4-5

Kruskal's algorithm

Remove all edges from graph
Place all edges in a PQ based on length/weight
While !PQ.isEmpty():

- Dequeue edge
- If the edge connects previous disconnected nodes or groups of nodes, keep the edge
- Otherwise discard the edge

The Good Will Hunting Problem

Video Clip

https://www.youtube.com/watch?v=N7b0cLn-wHU

"Draw all the homeomorphically irreducible trees with n=10."

"Draw all the homeomorphically irreducible trees with n=10."

In this case "trees" simply means graphs with no cycles "with n = 10" (i.e., has 10 nodes)
"homeomorphically irreducible"

- No nodes of degree 2 allowed in your solutions
 - > For this problem, nodes of degree 2 are useless in terms of tree structure—they just act as a blip on an edge—and are therefore banned
- Have to be actually different
 - Ignore superficial changes in rotation or angles of drawing