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Graphs Topics

Graphs!

4. Dijkstra’s shortest paths algorithm

= Spoiler: just a very, very small change to BFS
5. A* shortest paths algorithm

= Spoller: just a very, very small change to Dijkstra’s
6. Minimum Spanning Tree

» Kruskal's algorithm
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You predict the
next queue state:
A.);(C,F,G,l
B.C,EG,I
B
D. Other/none/
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Dijkstra's Algorithm

Split nodes apart into three groups:
Green nodes, where we already have the shortest path;

Gray nodes, which we have never seen; and

Q Yellow nodes that we still need to process.

Dijkstra's algorithm works as follows:
Mark all nodes gray except the start node, which is yellow and has cost O.

Until no yellow nodes remain:

- Choose the yellow node with the lowest total cost.

- Mark that node green.

- Mark all its gray neighbors yellow and with the appropriate cost.

- Update the costs of all adjacent yellow nodes by considering the path through
the current node.
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An Important Note

The version of Dijkstra's algorithm | have just described is not the
same as the version described in the course reader.

This version is more complex than the book's version, but is much
faster.

THIS IS THE VERSION YOU MUST USE ON YOUR TRAILBLAZER
ASSIGNMENT!
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How Dijkstra's Works

Dijkstra's algorithm works by incrementally computing the shortest path
to intermediary nodes in the graph in case they prove to be useful.

Most of these nodes are completely in the wrong direction.

No “big-picture” conception of how to get to the destination — the
algorithm explores outward in all directions.

Could we give the algorithm a hint?

Stanford University



Dijkstra’s: SPIN analysis (shoutout to GSB students)

Situation:

. Dijkstra's algorithm works by incrementally computing the shortest
path to intermediary nodes in the graph in case they prove to be
useful.

Problem:

. No big-picture conception of how to get to the destination — the
algorithm explores outward in all directions, “in case.”

Implication:

. Most of these explored nodes will end up being in completely the
wrong direction.

Need:
. Could we give the algorithm a “hint” of which direction to go?
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A* and Dijkstra’s

Close cousins
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Heuristics

In the context of graph searches, a heuristic function is a function that
guesses the distance from some known node to the destination node.

The guess doesn't have to be correct, but it should try to be as accurate
as possible.

Examples: For Google Maps, a heuristic for estimating distance might
be the straight-line “as the crow flies” distance.

Admissible Heuristics

A heuristic function is called an admissible heuristic if it never
overestimates the distance from any node to the destination.

In other words:
predicted-distance < actual-distance
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Why Heuristics Matter

We can modify Dijkstra's algorithm by introducing
heuristic functions.

Giv node u, there-are-fywo associate :

(e

The actual distagce f start npde s.

The heuristic distagce from u to the &§nd node t.

Key idea: Run DijkstNg's algorithm, bl use the following

priority in the priority g
priority(u) = distance(s, u) + heuristic(u, t)

This modification of Dijkstra's algorithm is called the
A* search algorithm.
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A* Search

As long as the heuristic is admissible (and satisfies one other
technical condition), A* will always find the shortest path from
the source to the destination node.

Can be dramatically faster than Dijkstra's algorithm.
Focuses work in areas likely to be productive.

Avoids solutions that appear worse until there is
evidence they may be appropriate.
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Mark all nodes as gray.

Mark the initial node s as yellow and at candidate distance 0. Dijkstra's
Enqueue s into the priority queue with priority 0. Algorithm

While not all nodes have been visited:
Dequeue the lowest-cost node u from the priority queue.
Color u green. The candidate distance d that is currently stored for node u is the length of the
shortest path from s to u.
If uis the destination node £, you have found the shortest path from s to t and are done.
For each node v connected to u by an edge of length L:
— Ifvisgray:
. Color vyellow.
. Mark v's distance as d + L.
. Set v's parent to be u.
. Engueue v into the priority queue with priority d + L.
— Ifvisyellow and the candidate distance to v is greater than d + L:
. Update v's candidate distance to be d + L.
. Update v's parent to be u.
. Update v's priority in the priority queue to d + L.



Mark all nodes as gray.
Mark the initial node s as yellow and at candidate distance 0. A* Search
Enqueue s into the priority queue with priority h(s,t).
While not all nodes have been visited:
Dequeue the lowest-cost node u from the priority queue.
Color u green. The candidate distance d that is currently stored for node u is the length of the
shortest path from s to u.
If uis the destination node £, you have found the shortest path from s to t and are done.
For each node v connected to u by an edge of length L:
— Ifvisgray:
. Color vyellow.
. Mark v's distance as d + L.
. Set v's parent to be u.
. Enqueue v into the priority queue with priority d + L + h(v,t).
— Ifvisyellow and the candidate distance to v is greater than d + L:
. Update v's candidate distance to be d + L.
. Update v's parent to be u.
. Update v's priority in the priority queue to d + L + h(v,t).




A* on two points where the heuristic is slightly misleading
due to a wall blocking the way

=) &
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A* starts with start node yellow, other nodes grey.
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A*. dequeue start node, turns green.
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A*. enqueue neighbors with candidate distance + heuristic
distance as the priority value.

1+
67?
1+ 1+
67? B 47 x
1+
67?
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A*: dequeue min-priority-value node.

1+
67?7
1+
67 P i | W
1+
67
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What goes in the 29292 ?

A. 2+57?
B. 1+67
C.2+42
( D. Other/none/mor% D
—

2 A4 A
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A*. enqueue neighbors.
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Now we're done with the
green “1” node’s turn.

What is the next node to
turn green? (and what
would it be if this were
Dijkstra’s?)
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A*. dequeue next lowest priority value node. Notice we are making a
straight line right for the end point, not wasting time with other directions.

1+ 2+
6? 57
1+
6o (x| 1] 2 W
1+2+
6? | 57
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A*: enqueue neighbors—uh-oh, wall blocks us from
continuing forward.
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A*: eventually figures out how to go around the wall, with
some waste in each direction.
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For Comparison: What Dijkstra's Algorithm Would Have Searched
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Mark all nodes as gray.

Mark the initial node s as yellow and at candidate distance 0. Dijkstra's
Enqueue s into the priority queue with priority 0. Algorithm

While not all nodes have been visited:
Dequeue the lowest-cost node u from the priority queue.
Color u green. The candidate distance d that is currently stored for node u is the length of the
shortest path from s to u.
If uis the destination node £, you have found the shortest path from s to t and are done.
For each node v connected to u by an edge of length L:
— Ifvisgray:
. Color vyellow.
. Mark v's distance as d + L.
. Set v's parent to be u.
. Engueue v into the priority queue with priority d + L.
— Ifvisyellow and the candidate distance to v is greater than d + L:
. Update v's candidate distance to be d + L.
. Update v's parent to be u.
. Update v's priority in the priority queue to d + L.



Mark all nodes as gray.
Mark the initial node s as yellow and at candidate distance 0. A* Search
Enqueue s into the priority queue with priority h(s,t).
While not all nodes have been visited:
Dequeue the lowest-cost node u from the priority queue.
Color u green. The candidate distance d that is currently stored for node u is the length of the
shortest path from s to u.
If uis the destination node £, you have found the shortest path from s to t and are done.
For each node v connected to u by an edge of length L:
— Ifvisgray:
. Color vyellow.
. Mark v's distance as d + L.
. Set v's parent to be u.
. Enqueue v into the priority queue with priority d + L + h(v,t).
— Ifvisyellow and the candidate distance to v is greater than d + L:
. Update v's candidate distance to be d + L.
. Update v's parent to be u.
. Update v's priority in the priority queue to d + L + h(v,t).




Minimum Spanning Tree
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A spanning tree in an undirected graph is a set of edges
with no cycles that connects all nodes.

A minimum spanning tree (or MST) is a spanning tree
with the least total cost.
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How many distinct minimum
spanning trees are in this
graph?

A.0-1 D.6-7
B.2-3 E.>7
C.4-5
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Kruskal's algorithm

Remove all edges from graph

Place all edges in a PQ based on length/weight
While 'PQ.isEmpty():

= Dequeue edge

= |f the edge connects previous disconnected
nodes or groups of nodes, keep the edge

= Otherwise discard the edge
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Kruskal's algorithm P iy
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The Good Will Hunting Problem
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Video Clip

https://www.youtube.com/watch?v=N7b0cLn-wHU
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https://www.youtube.com/watch?v=N7b0cLn-wHU

“Draw all the homeomorphically irreducible trees with n=10."

Jniversity




“Draw all the homeomorphically irreducible
trees with n=10.”

In this case “trees” simply means graphs with no cycles
“‘with n = 107 (i.e., has 10 nodes)

“homeomorphically irreducible”

= No nodes of degree 2 allowed in your solutions

» For this problem, nodes of degree 2 are useless in
terms of tree structure—they just act as a blip on an
edge—and are therefore banned

= Have to be actually different

» lgnore superficial changes in rotation or angles of
drawing
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