
Programming Abstractions

Cynthia Lee

C S 106B

Graphs Topics

Graphs!

1. Basics

 What are they? How do we represent them?

2. Theorems

 What are some things we can prove about graphs?

3. Breadth-first search on a graph

 Spoiler: just a very, very small change to tree version

4. Dijkstra’s shortest paths algorithm

 Spoiler: just a very, very small change to BFS

5. A* shortest paths algorithm

 Spoiler: just a very, very small change to Dijkstra’s

6. Minimum Spanning Tree

 Kruskal’s algorithm

A BA
0?

C

D E

HG

F

I

B C

D E

HG

F

I

6

2

1

3

5

7

3

9

2

4

1

4 7

1

A BA
0?

C

D E

HG

F

I

B C

D E

HG

F

I

6

2

1

3

5

7

3

9

2

4

1

4

A
0?

7

1

A BA
0?

C

D E

HG

F

I

B C

D E

HG

F

I

6

2

1

3

5

7

3

9

2

4

1

4

A
0?

7

1

A BA
0?

C

D E

HG

F

I

B C

D E

HG

F

I

6

2

1

3

5

7

3

9

2

4

1

4 7

1

A BA
0

C

D E

HG

F

I

B C

D E

HG

F

I

6

2

1

3

5

7

3

9

2

4

1

4 7

1

B

D

A B
6?

A
0

C

D
3?

E

HG

F

I

C

E

HG

F

I

6

2

1

3

5

7

3

9

2

4

1

4 7

1

B

D

A B
6?

A
0

C

D
3?

E

HG

F

I

C

E

HG

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

D
3?

7

1

B

D

A B
6?

A
0

C

D
3?

E

HG

F

I

C

E

HG

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

D
3?

7

1

B

D

A B
6?

A
0

C

D
3?

E

HG

F

I

C

E

HG

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

D
3?

7

1

B

D

A B
6?

A
0

C

D
3?

E

HG

F

I

C

E

HG

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

7

1

B

D

A B
6?

A
0

C

D
3

E

HG

F

I

C

E

HG

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

7

1

E

G

B

D

A B
6?

A
0

C

D
3

E
4?

HG
12?

F

I

C

H

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

7

1

E

G

B

D

A B
6?

A
0

C

D
3

E
4?

HG
12?

F

I

C

H

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

7

1

E

G

B

D

A B
6?

A
0

C

D
3

E
4?

HG
12?

F

I

C

H

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

E
4?

G
12?

7

1

E

G

B

D

A B
6?

A
0

C

D
3

E
4?

HG
12?

F

I

C

H

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

E
4?

G
12?

7

1

E

G

B

D

A B
6?

A
0

C

D
3

E
4?

HG
12?

F

I

C

H

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

E
4?

G
12?

7

1

E

G

B

D

A B
6?

A
0

C

D
3

E
4?

HG
12?

F

I

C

H

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

G
12?

7

1

E

G

B

D

A B
6?

A
0

C

D
3

E
4

HG
12?

F

I

C

H

F

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

G
12?

7

1

H

FE

G

B

D

A B
6?

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

G
12?

7

1

H

FE

G

B

D

A B
6?

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

G
12?

7

1

H

FE

G

B

D

A B
6?

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

G
12?

H
8?

F
11?

7

1

H

FE

G

B

D

A B
6?

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

G
12?

H
8?

F
11?

7

1

H

FE

G

B

D

A B
5?

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

B
6?

G
12?

H
8?

F
11?

7

1

H

FE

G

B

D

A B
5?

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

B
5?

G
12?

H
8?

F
11?

7

1

H

FE

G

B

D

A B
5?

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

B
5?

G
12?

H
8?

F
11?

7

1

H

FE

G

B

D

A B
5?

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

B
5?

G
12?

H
8?

F
11?

7

1

H

FE

G

B

D

A B
5?

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

B
5?

G
12?

H
8?

F
11?

7

1

H

FE

G

B

D

A B
5?

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

G
12?

H
8?

F
11?

7

1

H

FE

G

B

D

A B
5

A
0

C

D
3

E
4

H
8?

G
12?

F
11?

I

C

I

6

2

1

3

5

7

3

9

2

4

1

4

G
12?

H
8?

F
11?

7

1

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
12?

F
11?

II

6

2

1

3

5

7

3

9

2

4

1

4

G
12?

H
8?

F
11?

7

1

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
12?

F
11?

II

6

2

1

3

5

7

3

9

2

4

1

4
G

12?

H
8?

F
11?

7

1

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
12?

F
11?

II

6

2

1

3

5

7

3

9

2

4

1

4
G

12?

H
8?

F
11?

C
8?

7

1

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
12?

F
11?

II

6

2

1

3

5

7

3

9

2

4

1

4
G

12?

H
8?

F
11?

C
8?

7

1

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
12?

F
11?

II

6

2

1

3

5

7

3

9

2

4

1

4
G

12?

H
8?

F
11?

C
8?

7

1

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
12?

F
11?

II

6

2

1

3

5

7

3

9

2

4

1

4
G

12?

H
8?

F
11?

C
8?

7

1

You predict the

next queue state:

A. H,C,F,G,I

B. C,F,G,I

C.C,G,F,I

D.Other/none/

more

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
12?

F
11?

II

6

2

1

3

5

7

3

9

2

4

1

4

G
12?

F
11?

C
8?

7

1

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8

G
12?

F
11?

II

6

2

1

3

5

7

3

9

2

4

1

4

G
12?

F
11?

C
8?

7

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
12?

F
11?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
12?

F
11?

C
8?

H
8

7

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
12?

F
11?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
12?

F
11?

C
8?

H
8

7
I

13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
12?

F
11?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
12?

F
11?

C
8?

H
8

7
I

13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
10?

F
11?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
12?

F
11?

C
8?

H
8

7
I

13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
10?

F
11?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

F
11?

C
8?

H
8

7
I

13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
10?

F
11?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

F
11?

C
8?

H
8

7
I

13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
10?

F
11?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

F
11?

C
8?

H
8

7
I

13?
I

13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
10?

F
11?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

F
11?

C
8?

H
8

7
I

13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8?

G
10?

F
11?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

F
11?

C
8?

H
8

7
I

13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8

G
10?

F
11?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

F
11?

C
8?

7
I

13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8

G
10?

F
11?

I
13?

6

2

1

3

5

7

3

9

1

4

1

4

G
10?

F
11?

C
8?

7
I

13?

I

C

H

FE

G

B

D

A B
5

A
0

C
8?

D
3

E
4

H
8

G
10?

F
11?

I
13?

6

2

1

3

5

7

3

9

1

4

1

4

G
10?

F
11?

7

I
13?

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
11?

I
13?

6

2

1

3

5

7

3

9

1

4

1

4

G
10?

F
11?

7

I
13?

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
11?

I
13?

6

2

1

3

5

7

3

9

1

4

1

4

G
10?

F
11?

7

I
13?

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9?

I
13?

6

2

1

3

5

7

3

9

1

4

1

4

G
10?

F
9?

7

I
13?

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9?

I
13?

6

2

1

3

5

7

3

9

1

4

1

4

G
10?

F
9?

7

I
13?

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9?

I
13?

6

2

1

3

5

7

3

9

1

4

1

4

G
10?

F
9?

7

I
13?

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9?

I
13?

6

2

1

3

5

7

3

9

1

4

1

4

G
10?

F
9?

7

I
13?

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9?

I
13?

6

2

1

3

5

7

3

9

1

4

1

4

G
10?

F
9?

7

I
13?

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

F
9?

7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

F
9?

7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9?

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9

I
13?

6

2

1

3

5

7

3

9

2

4

1

4

G
10?

7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10?

F
9

I
13?

6

2

1

3

5

7

3

9

2

4

1

4 7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10

F
9

I
13?

6

2

1

3

5

7

3

9

2

4

1

4 7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10

F
9

I
13?

6

2

1

3

5

7

3

9

2

4

1

4 7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10

F
9

I
13?

6

2

1

3

5

7

3

9

2

4

1

4 7

I
13?

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10

F
9

I
13?

6

2

1

3

5

7

3

9

2

4

1

4 7

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10

F
9

I
13

6

2

1

3

5

7

3

9

2

4

1

4 7

1

I

C

H

FE

G

B

D

A B
5

A
0

C
8

D
3

E
4

H
8

G
10

F
9

I
13

6

2

1

3

5

7

3

9

2

4

1

4 7

1

Dijkstra's Algorithm

● Split nodes apart into three groups:

● Green nodes, where we already have the shortest path;

● Gray nodes, which we have never seen; and

● Yellow nodes that we still need to process.

● Dijkstra's algorithm works as follows:

● Mark all nodes gray except the start node, which is yellow and has cost 0.

● Until no yellow nodes remain:

– Choose the yellow node with the lowest total cost.

– Mark that node green.

– Mark all its gray neighbors yellow and with the appropriate cost.

– Update the costs of all adjacent yellow nodes by considering the path through

the current node.

An Important Note

● The version of Dijkstra's algorithm I have just described is not the

same as the version described in the course reader.

● This version is more complex than the book's version, but is much

faster.

● THIS IS THE VERSION YOU MUST USE ON YOUR TRAILBLAZER

ASSIGNMENT!

How Dijkstra's Works

● Dijkstra's algorithm works by incrementally computing the shortest path

to intermediary nodes in the graph in case they prove to be useful.

● Most of these nodes are completely in the wrong direction.

● No “big-picture” conception of how to get to the destination – the

algorithm explores outward in all directions.

● Could we give the algorithm a hint?

Dijkstra’s: SPIN analysis (shoutout to GSB students)

● Situation:

● Dijkstra's algorithm works by incrementally computing the shortest
path to intermediary nodes in the graph in case they prove to be
useful.

● Problem:

● No big-picture conception of how to get to the destination – the
algorithm explores outward in all directions, “in case.”

● Implication:

● Most of these explored nodes will end up being in completely the
wrong direction.

● Need:

● Could we give the algorithm a “hint” of which direction to go?

A* and Dijkstra’s
Close cousins

Heuristics

● In the context of graph searches, a heuristic function is a function that

guesses the distance from some known node to the destination node.

● The guess doesn't have to be correct, but it should try to be as accurate

as possible.

● Examples: For Google Maps, a heuristic for estimating distance might

be the straight-line “as the crow flies” distance.

Admissible Heuristics

● A heuristic function is called an admissible heuristic if it never

overestimates the distance from any node to the destination.

● In other words:

● predicted-distance ≤ actual-distance

Why Heuristics Matter

● We can modify Dijkstra's algorithm by introducing

heuristic functions.

● Given any node u, there are two associated costs:

●

● The actual distance from the start node s.

● The heuristic distance from u to the end node t.

● Key idea: Run Dijkstra's algorithm, but use the following

priority in the priority queue:

● priority(u) = distance(s, u) + heuristic(u, t)

● This modification of Dijkstra's algorithm is called the

A* search algorithm.

s tu

A* Search

 As long as the heuristic is admissible (and satisfies one other

technical condition), A* will always find the shortest path from

the source to the destination node.

 Can be dramatically faster than Dijkstra's algorithm.

 Focuses work in areas likely to be productive.

 Avoids solutions that appear worse until there is
evidence they may be appropriate.

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority h(s,t).
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L + h(v,t).

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L + h(v,t).

A* Search

A* on two points where the heuristic is slightly misleading
due to a wall blocking the way

A* starts with start node yellow, other nodes grey.

A*: dequeue start node, turns green.

1 +
6?

1 +
6?

1 +
4?

1 +
6?

A*: enqueue neighbors with candidate distance + heuristic
distance as the priority value.

1 +
6?

1 +
6?

1

1 +
6?

A*: dequeue min-priority-value node.

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

???

2 +
5?

What goes in the ?

A. 2 + 5?

B. 1 + 6?

C. 2 + 4?

D. Other/none/more

???

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2 +
3?

2 +
5?

A*: enqueue neighbors.

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2 +
3?

2 +
5?

Now we’re done with the
green “1” node’s turn.

What is the next node to
turn green? (and what
would it be if this were
Dijkstra’s?)

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2

2 +
5?

A*: dequeue next lowest priority value node. Notice we are making a
straight line right for the end point, not wasting time with other directions.

1 +
6?

1 +
6?

1

1 +
6?

2 +
5?

2

2 +
5?

3 +
4?

3 +
4?

A*: enqueue neighbors—uh-oh, wall blocks us from
continuing forward.

1 21

2

21

1

3

32
3 +
8?

3 +
8?

2
3 +
8?

3 +
8?

4

5 +
6?

2

3 +
8?

3

4 +
7?

2

3 +
8?

3 +
8?

2

3

4 +
7?

4

5 +
6?

5

6 +
5?

6

7 +
4?

5

6 +
5?

7
8 +
1?

7

8 +
3?

8 +
3?

8

7 +
2?

6

7 +
4?

7 +
2?

A*: eventually figures out how to go around the wall, with
some waste in each direction.

1 21

2

21

1

3

32

2

42 3

2

2

3 4

5 6

5

7

7

8

6

For Comparison: What Dijkstra's Algorithm Would Have Searched

64

4 53

3

3

3

3

3

3

5

5

64

4

4

4

4

4

4

4

4

4 55

5

5

5

5

5

5

56

6

6

6

6

6 6

6

7

7

7

78

8 7

7

7

7

7

7 8

8

8

8

8

8

8

8 9?

9?

9?

9?

9?

9?

9?

9?

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority h(s,t).
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L + h(v,t).

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L + h(v,t).

A* Search

Minimum Spanning Tree

A spanning tree in an undirected graph is a set of edges

with no cycles that connects all nodes.

A minimum spanning tree (or MST) is a spanning tree

with the least total cost.

B D

ECA

F

How many distinct minimum

spanning trees are in this

graph?

A. 0-1

B. 2-3

C.4-5

D.6-7

E. >7

3

3

1

3

3

7

Edges:

(A,B)=1

(A,C)=3

(B,C)=6

(B,D)=3

(C,E)=3

(D,E)=3

(D,F)=7

Kruskal’s algorithm

Remove all edges from graph

Place all edges in a PQ based on length/weight

While !PQ.isEmpty():

 Dequeue edge

 If the edge connects previous disconnected

nodes or groups of nodes, keep the edge

 Otherwise discard the edge

Kruskal’s algorithm

The Good Will Hunting Problem

Video Clip

https://www.youtube.com/watch?v=N7b0cLn-wHU

https://www.youtube.com/watch?v=N7b0cLn-wHU

“Draw all the homeomorphically irreducible trees with n=10.”

“Draw all the homeomorphically irreducible
trees with n=10.”

In this case “trees” simply means graphs with no cycles

“with n = 10” (i.e., has 10 nodes)

“homeomorphically irreducible”

 No nodes of degree 2 allowed in your solutions

› For this problem, nodes of degree 2 are useless in

terms of tree structure—they just act as a blip on an

edge—and are therefore banned

 Have to be actually different

› Ignore superficial changes in rotation or angles of

drawing

