Programming Abstractions
CS106B

Cynthia Lee

Stanford University

Graphs Topics

Graphs!

4. Dijkstra’s shortest paths algorithm

= Spoiler: just a very, very small change to BFS
5. A* shortest paths algorithm

= Spoller: just a very, very small change to Dijkstra’s
6. Minimum Spanning Tree

» Kruskal's algorithm

Stanford University

02

Stanford University

A 6 B 3 c

Stanford University

Stanford University

Stanford University

Stanford University

6 /B 3 C
67
1 1
1 T . =
4 7
2 " H 5 I

Stanford University

Stanford University

w

D

O
—
H
m
<
ﬂ

Stanford University

Stanford University

Stanford University

Stanford University

Stanford University

Stanford University

Stanford University

Stanford University

Stanford University

>
i)
© p{
%]
—
)
>
© p{
=
)
o
=
g
=
I
=)
wn

1
7
5 I

Stanford University

>
i)
© p{
%]
o
>
© p{
=
)
o
=
g
=
I
=)
wn

Stanford University

S8
1
2

Stanford University

S8
1
2

Stanford University

Stanford University

Stanford University

oo =5 a5 o

Stanford University

Stanford University

C
1
7
|

Stanford University

C
1
7
|

Stanford University

C
1
7
|

Stanford University

C
1
7
|

Stanford University

Stanford University

C
87

1
7

S

®

Stanford University

C
87

1
7

S

®

Stanford University

R
— ~

7
5

Stanford University

ECER
PR
@—@(=s

7
5

You predict the
next queue state:
A.);(C,F,G,l
B.C,EG,I
B
D. Other/none/

more 1

(o)
=
N

Stanford University

Stanford University

EEEr
6o
@—@ (=

7
5

Stanford University

R

7
5

1
1 i
4

Stanford University

B
i r~

7
S

1
1 i
4

Stanford University

B
i r~

7
S

1
1 i
4

Stanford University

B
i r~

7
S

1
1 i
4

Stanford University

o5 w5 oy -5
R

B R

.

1
4

L8

Stanford University

B
i r~

3

.

1
4

L8

Stanford University

B
i r~

3

.

1
4

L8

Stanford University

B
i r~

3

.

1
4

L8

Stanford University

B
i r~

3

.

1
4

L8

Stanford University

B
i r~

3

.

1
4

L8

Stanford University

B
i r~

1
1
1
1
(To N
1
1
1

B R

.

1
4

S
2

Stanford University

L] @ o~ Q

1
1
1
1
(To N
1
1
1

1
4

Stanford University

L] @ o~ Q

1
1
1
1
(To N
1
1
1

1
4

Stanford University

o)
1

1
4

6

2

Stanford University

- 8—(9)

2

Stanford University

@1‘7
i
i
™M

1
1
1
1
(To N
1
1
1

1
1 ’ 7
4

2

Stanford University

S
1
2

Stanford University

S
1
2

Stanford University

@1‘7
i
i
™M

1
1
1
1
(To N
1
1
1

1
1 ’ 7
4

2

Stanford University

3
7

¢

6

1
2

Stanford University

3
7

¢

6

1
2

Stanford University

S
1
2

Stanford University

S
1
2

r~ Q

1
1
1
1

(To N

1

1

1

S
1
2

Stanford University

S8

2

Stanford University

Stanford University

S8

-

S
1
2

Stanford University

Stanford University

3
7

¢

S
1
2

Stanford University

1
4

A

1

A

4

Stanford University

Stanford University

?< L ’7

9

A

3

Stanford University

1

6‘ 3

S8

Stanford University

*‘II.K: 3

S8

1

Stanford University

Stanford University

Stanford University

Dijkstra's Algorithm

Split nodes apart into three groups:
Green nodes, where we already have the shortest path;

Gray nodes, which we have never seen; and

Q Yellow nodes that we still need to process.

Dijkstra's algorithm works as follows:
Mark all nodes gray except the start node, which is yellow and has cost O.

Until no yellow nodes remain:

- Choose the yellow node with the lowest total cost.

- Mark that node green.

- Mark all its gray neighbors yellow and with the appropriate cost.

- Update the costs of all adjacent yellow nodes by considering the path through
the current node.

Stanford University

An Important Note

The version of Dijkstra's algorithm | have just described is not the
same as the version described in the course reader.

This version is more complex than the book's version, but is much
faster.

THIS IS THE VERSION YOU MUST USE ON YOUR TRAILBLAZER
ASSIGNMENT!

Stanford University

How Dijkstra's Works

Dijkstra's algorithm works by incrementally computing the shortest path
to intermediary nodes in the graph in case they prove to be useful.

Most of these nodes are completely in the wrong direction.

No “big-picture” conception of how to get to the destination — the
algorithm explores outward in all directions.

Could we give the algorithm a hint?

Stanford University

Dijkstra’s: SPIN analysis (shoutout to GSB students)

Situation:

. Dijkstra's algorithm works by incrementally computing the shortest
path to intermediary nodes in the graph in case they prove to be
useful.

Problem:

. No big-picture conception of how to get to the destination — the
algorithm explores outward in all directions, “in case.”

Implication:

. Most of these explored nodes will end up being in completely the
wrong direction.

Need:
. Could we give the algorithm a “hint” of which direction to go?

Stanford University

A* and Dijkstra’s

Close cousins

Stanford University

Heuristics

In the context of graph searches, a heuristic function is a function that
guesses the distance from some known node to the destination node.

The guess doesn't have to be correct, but it should try to be as accurate
as possible.

Examples: For Google Maps, a heuristic for estimating distance might
be the straight-line “as the crow flies” distance.

Admissible Heuristics

A heuristic function is called an admissible heuristic if it never
overestimates the distance from any node to the destination.

In other words:
predicted-distance < actual-distance

Stanford University

Why Heuristics Matter

We can modify Dijkstra's algorithm by introducing
heuristic functions.

Giv node u, there-are-fywo associate :

(e

The actual distagce f start npde s.

The heuristic distagce from u to the &§nd node t.

Key idea: Run DijkstNg's algorithm, bl use the following

priority in the priority g
priority(u) = distance(s, u) + heuristic(u, t)

This modification of Dijkstra's algorithm is called the
A* search algorithm.

Stanford University

A* Search

As long as the heuristic is admissible (and satisfies one other
technical condition), A* will always find the shortest path from
the source to the destination node.

Can be dramatically faster than Dijkstra's algorithm.
Focuses work in areas likely to be productive.

Avoids solutions that appear worse until there is
evidence they may be appropriate.

Stanford University

Mark all nodes as gray.

Mark the initial node s as yellow and at candidate distance 0. Dijkstra's
Enqueue s into the priority queue with priority 0. Algorithm

While not all nodes have been visited:
Dequeue the lowest-cost node u from the priority queue.
Color u green. The candidate distance d that is currently stored for node u is the length of the
shortest path from s to u.
If uis the destination node £, you have found the shortest path from s to t and are done.
For each node v connected to u by an edge of length L:
— Ifvisgray:
. Color vyellow.
. Mark v's distance as d + L.
. Set v's parent to be u.
. Engueue v into the priority queue with priority d + L.
— Ifvisyellow and the candidate distance to v is greater than d + L:
. Update v's candidate distance to be d + L.
. Update v's parent to be u.
. Update v's priority in the priority queue to d + L.

Mark all nodes as gray.
Mark the initial node s as yellow and at candidate distance 0. A* Search
Enqueue s into the priority queue with priority h(s,t).
While not all nodes have been visited:
Dequeue the lowest-cost node u from the priority queue.
Color u green. The candidate distance d that is currently stored for node u is the length of the
shortest path from s to u.
If uis the destination node £, you have found the shortest path from s to t and are done.
For each node v connected to u by an edge of length L:
— Ifvisgray:
. Color vyellow.
. Mark v's distance as d + L.
. Set v's parent to be u.
. Enqueue v into the priority queue with priority d + L + h(v,t).
— Ifvisyellow and the candidate distance to v is greater than d + L:
. Update v's candidate distance to be d + L.
. Update v's parent to be u.
. Update v's priority in the priority queue to d + L + h(v,t).

A* on two points where the heuristic is slightly misleading
due to a wall blocking the way

=) &

Stanford University

A* starts with start node yellow, other nodes grey.

Stanford University

A*. dequeue start node, turns green.

Stanford University

A*. enqueue neighbors with candidate distance + heuristic
distance as the priority value.

1+
67?
1+ 1+
67? B 47 x
1+
67?

Stanford University

A*: dequeue min-priority-value node.

1+
67?7
1+
67 P i | W
1+
67

Stanford University

What goes in the 29292 ?

A. 2+57?
B. 1+67
C.2+42
(D. Other/none/mor% D
—

2 A4 A

Stanford University

A*. enqueue neighbors.

Stanford University

Now we're done with the
green “1” node’s turn.

What is the next node to
turn green? (and what
would it be if this were
Dijkstra’s?)

Stanford University

A*. dequeue next lowest priority value node. Notice we are making a
straight line right for the end point, not wasting time with other directions.

1+ 2+
6? 57
1+
6o (x| 1] 2 W
1+2+
6? | 57

Stanford University

A*: enqueue neighbors—uh-oh, wall blocks us from
continuing forward.

Stanford University

A*: eventually figures out how to go around the wall, with
some waste in each direction.

Stanford University

For Comparison: What Dijkstra's Algorithm Would Have Searched

Stanford University

Mark all nodes as gray.

Mark the initial node s as yellow and at candidate distance 0. Dijkstra's
Enqueue s into the priority queue with priority 0. Algorithm

While not all nodes have been visited:
Dequeue the lowest-cost node u from the priority queue.
Color u green. The candidate distance d that is currently stored for node u is the length of the
shortest path from s to u.
If uis the destination node £, you have found the shortest path from s to t and are done.
For each node v connected to u by an edge of length L:
— Ifvisgray:
. Color vyellow.
. Mark v's distance as d + L.
. Set v's parent to be u.
. Engueue v into the priority queue with priority d + L.
— Ifvisyellow and the candidate distance to v is greater than d + L:
. Update v's candidate distance to be d + L.
. Update v's parent to be u.
. Update v's priority in the priority queue to d + L.

Mark all nodes as gray.
Mark the initial node s as yellow and at candidate distance 0. A* Search
Enqueue s into the priority queue with priority h(s,t).
While not all nodes have been visited:
Dequeue the lowest-cost node u from the priority queue.
Color u green. The candidate distance d that is currently stored for node u is the length of the
shortest path from s to u.
If uis the destination node £, you have found the shortest path from s to t and are done.
For each node v connected to u by an edge of length L:
— Ifvisgray:
. Color vyellow.
. Mark v's distance as d + L.
. Set v's parent to be u.
. Enqueue v into the priority queue with priority d + L + h(v,t).
— Ifvisyellow and the candidate distance to v is greater than d + L:
. Update v's candidate distance to be d + L.
. Update v's parent to be u.
. Update v's priority in the priority queue to d + L + h(v,t).

Minimum Spanning Tree

Stanford University

A spanning tree in an undirected graph is a set of edges
with no cycles that connects all nodes.

A minimum spanning tree (or MST) is a spanning tree
with the least total cost.

Stanford University

How many distinct minimum
spanning trees are in this
graph?

A.0-1 D.6-7
B.2-3 E.>7
C.4-5

Stanford University

Kruskal's algorithm

Remove all edges from graph

Place all edges in a PQ based on length/weight
While 'PQ.isEmpty():

= Dequeue edge

= |f the edge connects previous disconnected
nodes or groups of nodes, keep the edge

= Otherwise discard the edge

Stanford University

Kruskal's algorithm P iy

Stanford University

The Good Will Hunting Problem

Stanford University

Video Clip

https://www.youtube.com/watch?v=N7b0cLn-wHU

Stanford University

https://www.youtube.com/watch?v=N7b0cLn-wHU

“Draw all the homeomorphically irreducible trees with n=10."

Jniversity

“Draw all the homeomorphically irreducible
trees with n=10.”

In this case “trees” simply means graphs with no cycles
“‘with n = 107 (i.e., has 10 nodes)

“homeomorphically irreducible”

= No nodes of degree 2 allowed in your solutions

» For this problem, nodes of degree 2 are useless in
terms of tree structure—they just act as a blip on an
edge—and are therefore banned

= Have to be actually different

» lgnore superficial changes in rotation or angles of
drawing

Stanford University

