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Graphs Topics

Graphs!
1.

3. Breadth-first search on a graph

= Spoiler: just a very, very small change to tree version
4. Dijkstra’s shortest paths algorithm

= Spoiler: just a very, very small change to BFS
5.
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Breadth-First Search

We’ve seen BFS before this quarter!
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BFS In this class so far ‘

Word Ladder

Assignment L © __‘

Maze
C/ARNS, N\
Trees Slime Mold
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BFS Code (Maze version)

bool solveMazeQueue(Maze & maze, Point start) {
Vector<Direction> compass; 1. Make a Queue to remember places

compass += WEST, SOUTH, BAST, NORTH; \ye want to explore in the future
Queue<Point> toExplore;

toExplore.enqueue(start); 2. Enqueue startlng pomt
rﬂ\n.?]:ﬁ.j.le(!tc:nE}«:}_:>l<:nre.isEIn.pty()){
Point current = toExplore.dequeue(); 4. Dequeue a point and visit it
if (maze.isOutside(current)) return true;
if (maze.isMarked(current)) continue;
maze.markSquare(current); ) )
pause(200); 5. Enqueue any new points you discover
for (Direction dir : compass) { while visiting the current point
if (!maze.wallExists(current, dir)) {
toExplore.enqueue(adjacentPoint (current,dir));
}
}

While there are still things in
the queue, keep exploring!
A

7t

return false;
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Breadth-First Search in a Graph

Graph algorithms
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Breadth-First Search

BFS is useful for finding
the shortest path
between two nodes.

Example:
What is the shortest way to
go from F to G?
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Breadth-First Search

BFS is useful for finding
the shortest path
between two nodes.

Example:
What is the shortest way to
go from F to G?

Way 1: F->E->1->G
3 edges
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Breadth-First Search

BFS is useful for finding
the shortest path
between two nodes.

Example:
What is the shortest way to
go from F to G?

Way 2: F->K->G
2 edges
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Breadth-First Search

Yoesmite

TO START:
Palo Alto | (1)Color all nodes GREY
| (2)Queue is empty
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Breadth-First Search

@ = TO START (2):
(1)Enqueue the desired
start node
(2)Note that anytime we
enqueue a node, we
mark it /=
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Breadth-First Search

LOOP PROCEDURE:
(1)Dequeue a node

(2)Mark current node

GREEI

(3)Set current node’s

GREY neighbors’ parent

pointers to current node,

then enqueue them

(remember: set them

)
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search

AIB/DIEIK)
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Breadth-FirAst Search
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Breadth- Flrst Search
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Breadth-FirAst Search
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Breadth-First Sear%h
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Breadth-First Seargh
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Breadth-First Searqh
vad
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search

You predict the next
slide!

A. K’s neighbors F,G,H are
yellow and in the queue and
their parents are pointing to K

B. K’s neighbors G,H are yellow
and in the queue and-their-

» v 4
(c. Ks neighbors G,H are yellow
— and in the queue

D. Other/none/more
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search
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Breadth-First Search

Done!

Now we know that to go
from Yoesmite (F) to Palo
Alto (J), we should go:

F->E->I->L->J
(4 edges)

(note we follow the parent
pointers backwards)
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Breadth-First Search

THINGS TO NOTICE:

(1) We used a queue
(2) What's left is a kind of

TN subset of the edges, in

% the form of ‘parent’

. pointers

‘ (3) If you follow the parent

pointers from the desired
end point, you will get
back to the start point,

and it will be the shortest

way to do that
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Quick question about efficiency...
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Quick question about efficiency...

You calculated the shortest path for yourself to return home from the
reunion (Yosemite to Palo Alto) and let’s just say that it took time
X = O(([g| + [V])Iog|VI)
« With respect to the number of cities |V|, and the number of
edges or road segments |E]|

How long will it take you, in total, to calculate the shortest path for
you and all of your relatives?

A. O(|VI*X)
*IVI* X)

D. Other/none/more
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Breadth-First Search

THINGS TO NOTICE:
(4) We now have the
answer to the question
“What is the shortest path
to you from F?” for every
single node in the
graph!!
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Dijkstra’s Shortest Paths

(Like Breadth-first Search, but takes into account weight/distance
between nodes)
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Edsger Dijkstra
1930-2002

o THE multiprogramming system (operating
system)

o Layers of abstraction!!

o Complier for a language that can do
recursion

o Dining Philosopher’s Problem (resource
contention and deadlock)

o Dijkstra’s algorithm el
o “Goto considered harmful” (title given to his it il e e
letter)
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The Structure of the "THE’-Multiprogramming System

Edsger W. Dijkstra
Technological University, Eindhoven, The Netherlands

A multiprogramming system is described in which all ac-
tivities are divided over a number of sequential processes.
These sequential processes are placed at various hierarchical
levels, in each of which one or more independent abstractions
have been implemented. The hierarchical structure proved to
be vital for the verification of the logical soundness of the
design and the correctness of its implementation,

KEY WORDS AND PHRASES: operating system, multiprogramming system,
system hierarchy, system structure, real-time debugging, program verification,
synchronizing primitives, cooperating sequential processes, system levels,
input-output buffering, multiprogramming, processor sharing, multiprocessing?

CR CATEGORIES: 4.30, 4.32

Introduction

In response to a call explicitly asking for papers “on
timely research and development efforts,” I present a
progress report on the multiprogramming effort at the
Department of Mathematics at the Technological Uni-
versity in Eindhoven. .

Having very limited resources (viz. a group of six peo-
ple of, on the average, half-time availability) and wishing
to contribute to the art of system design—including all
the stages of conception, construction, and verification,

Accordingly, I shall try to go beyond just reporting
what we have done and how, and I shall try to formulate
as well what we have learned.

I should like to end the introduction with two short
remarks on working conditions, which I make for the sake
of completeness. I shall not stress these points any further.

One remark is that production speed is severely slowed
down if one works with half-time people who have other
obligations as well. This is at least a factor of four; prob-
ably it is worse. The people themselves lose time and
energy in switching over; the group as a whole loses de-
cision speed as discussions, when needed, have often to be
postponed until all people concerned are available.

The other remark is that the members of the group
(mostly mathematicians) have previously enjoyed as good
students a university training of five to eight years and
are of Master’s or Ph.D. level. I mention this explicitly
because at least in my country the intellectual level needed
for system design is in general grossly underestimated. I
am convinced more than ever that this type of work is
very difficult, and that every effort to do it with other than
the best people is doomed to either failure or moderate
success at enormous expense.

The Tool and the Goal

The system has been designed for a Dutch machine, the
BT, Y2 NV Fleptroloormiea Riewiile (ZBYY Charae-
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The Shortest Path Problem

Suppose that you have a graph representing different locations
Each edge has an associated cost (or weight, length, etc)
We'll assume costs are nonnegative*

Goal: Find the least-cost (or lowest-weight, lowest-length,
etc) path from some node u to a node v

* else use the Bellman—Ford algorithm

Stanford University



Stanford University



Mark all nodes as gray.

Mark the initial node s as yellow and at candidate distance 0. Dijkstra's
Enqueue s into the priority queue with priority 0. Algorithm

While not all nodes have been visited:
Dequeue the lowest-cost node u from the priority queue.
Color u green. The candidate distance d that is currently stored for node u is the length of the
shortest path from s to u.
If uis the destination node £, you have found the shortest path from s to t and are done.
For each node v connected to u by an edge of length L:
— Ifvisgray:
. Color vyellow.
. Mark v's distance as d + L.
. Set v's parent to be u.
. Engueue v into the priority queue with priority d + L.
— Ifvisyellow and the candidate distance to v is greater than d + L:
. Update v's candidate distance to be d + L.
. Update v's parent to be u.
. Update v's priority in the priority queue to d + L.



