Programming Abstractions
CS106B

Cynthia Lee

Stanford University

Graphs Topics

Graphs!
1.

3. Breadth-first search on a graph

= Spoiler: just a very, very small change to tree version
4. Dijkstra’s shortest paths algorithm

= Spoiler: just a very, very small change to BFS
5.

Stanford University

Breadth-First Search

We’ve seen BFS before this quarter!

Stanford University

BFS In this class so far ‘

Word Ladder

Assignment L © __‘

Maze
C/ARNS, N\
Trees Slime Mold

Stanford University

BFS Code (Maze version)

bool solveMazeQueue(Maze & maze, Point start) {
Vector<Direction> compass; 1. Make a Queue to remember places

compass += WEST, SOUTH, BAST, NORTH; \ye want to explore in the future
Queue<Point> toExplore;

toExplore.enqueue(start); 2. Enqueue startlng pomt
rﬂ\n.?]:ﬁ.j.le(!tc:nE}«:}_:>l<:nre.isEIn.pty()){
Point current = toExplore.dequeue(); 4. Dequeue a point and visit it
if (maze.isOutside(current)) return true;
if (maze.isMarked(current)) continue;
maze.markSquare(current);))
pause(200); 5. Enqueue any new points you discover
for (Direction dir : compass) { while visiting the current point
if (!maze.wallExists(current, dir)) {
toExplore.enqueue(adjacentPoint (current,dir));
}
}

While there are still things in
the queue, keep exploring!
A

7t

return false;

Stanford University

Breadth-First Search in a Graph

Graph algorithms

Stanford University

Breadth-First Search

BFS is useful for finding
the shortest path
between two nodes.

Example:
What is the shortest way to
go from F to G?

Stanford University

Breadth-First Search

BFS is useful for finding
the shortest path
between two nodes.

Example:
What is the shortest way to
go from F to G?

Way 1: F->E->1->G
3 edges

Stanford University

Breadth-First Search

BFS is useful for finding
the shortest path
between two nodes.

Example:
What is the shortest way to
go from F to G?

Way 2: F->K->G
2 edges

Stanford University

A

Butte
Walla Walla 2 Billings
(< 2] Bozeman s
\, ¥ _boroe oPortland Aber
McMinnvilleo
L’_‘ OSalem Sheridan
rallise °Albany South
(ﬁl | ~ Dakota
Eugene Bend Yellowstone Rapid City
+| 9 e National Park o
T Oregon Boise
Il Nampa© Q {daho ldah%ralls
Roseburg
Crater Lake Pocatello Wyoming Casper
| National Park
Grants Pass Klamath
SNy Falls
! Medford 2

=3
o
W Klamath

Logan
L‘:J River

. BFS is useful for finding

Lake City
Red Bluff

the shortest path
Maseis between two nodes.

Utah

SanlaoRosa OSacramento

2
San

Arches
‘osemite

. Map Example:
o What is the shortest way to
San Jose alifornia StGeorge

E
: go from Yoesmite (F) to
Salinas Fresno
Las Vegas
[}
Hendoerson Palo Alto (J)?
Bakersfield Nipton
o Flagstaff
Caliente 5
Valencia Joshua Tree
A National Park o
Arizona
South Valley o HFosAngeleseds
Long Beach®@ %
livine F’hogmx
Oceansidet , Escondido

o
Chandler

o San Diego© Mexicali

| 200 km]

Tijuana

2 Abilene Fo
Tucson Las Coruces Carl§had o
o
Pearce

Midland :ity

Map data ®2012 Google, INEGI - Rej

Breadth-First Search

Yoesmite

TO START:
Palo Alto | (1)Color all nodes GREY
| (2)Queue is empty

Stanford University

Breadth-First Search

@ = TO START (2):
(1)Enqueue the desired
start node
(2)Note that anytime we
enqueue a node, we
mark it /=

Stanford University

Breadth-First Search

LOOP PROCEDURE:
(1)Dequeue a node

(2)Mark current node

GREEI

(3)Set current node’s

GREY neighbors’ parent

pointers to current node,

then enqueue them

(remember: set them

)

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

AIB/DIEIK)

Stanford University

Breadth-FirAst Search

vV~
<»>

Stanford University

Breadth- Flrst Search

‘0'\0

|soex

Stanford University

Breadth-FirAst Search
v ad

4’ ----

|/3oex
Stanford University

Breadth-First Sear%h

VA
o -Q»f

Stanford University

Breadth-First Seargh

i

\

Stanford University

Breadth-First Searqh
vad

D (E(K)(C)H)

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

You predict the next
slide!

A. K’s neighbors F,G,H are
yellow and in the queue and
their parents are pointing to K

B. K’s neighbors G,H are yellow
and in the queue and-their-

» v 4
(c. Ks neighbors G,H are yellow
— and in the queue

D. Other/none/more

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Stanford University

Breadth-First Search

Done!

Now we know that to go
from Yoesmite (F) to Palo
Alto (J), we should go:

F->E->I->L->J
(4 edges)

(note we follow the parent
pointers backwards)

Stanford University

Breadth-First Search

THINGS TO NOTICE:

(1) We used a queue
(2) What's left is a kind of

TN subset of the edges, in

% the form of ‘parent’

. pointers

‘ (3) If you follow the parent

pointers from the desired
end point, you will get
back to the start point,

and it will be the shortest

way to do that

Stanford University

Butte
o

Billings
Bozeman o
roe oPortland p Aber
n L U L] L
Quick question-about efficienc
= South
159 1 > Dakota
I* Eugene B Yellowstone Rapid City
) & National Park o
Let’s say that you have‘an extended family
with somebody in every city in the western = Yyeminyctes
U.S.
lof]an
|- Nebraska
salt Chey;nne North!’la'(e |;
Eureka Elko Lake City . ;
i Redding & Fort %olllns Kearneyo
Red Bluff Sandy Lovelando ©Greeley
ed | o
i Provo Bmgder
heno Nevada Denver, United States
o o Centennial
Vel Colorado
L8 Colorado Hays
2 Springs ., Fountain
Saﬂl%Rosa o Sacramento Arches Valley Kar
National Park
San o r Puéblo
Fran: IR° O Stockton ‘osemite
Gk ; National Park
Io) A _ Durango
San Jose alifornia StGeorge ?
o rarmgpqmn
Salinas Fresno
Las Vegas
0,
Henderson Santa Fe
z [] ‘
Bakersfield Nipton Okl
Oy Flagstaff Albuquerque Amarillo
Caliente (o]
Valencia dofh“al ;:eek Clovis
S, lational Far o
South Valley o . Arizona NeWw
5 . h(Z’Los Angeles Mexico sk
on eac| (\ ubboci
e Ir\ﬁne Phooenlx Roswell o
Oceanside® |, cccondido Chagdler
Alamogordo
: Mexicali 9 Hobbs -
100 mi San Diego© X Corlitad. | S Abilene O
I—l_l Tiliana Tucson s Cruces o o
200 km o s Midland
P\ =2 — AV Map dats ©2012 Google, INEGI - Rej

Butte

Bozeman

Quick question about efficiency...

1WE

You're all going to fly to'Yosemite fora

*

Idaho Falls

family reunion, and then everyone will rent a =

car and drive home, and you've been tasked
with making custom Yosemite-to-home

driving directions for everyone.

SantaoRosa o Sacramento
San

Fran o o Stockton ‘osemite
N =™ National Park
remor\h{ o
o) e . Y
San Jose California

o o
Salinas Fresno
Bake(r)sﬁeld

Caliente

Va!epcia
South Valley o

Long Beacho "o

Irvine

Oceanside® ; £scondido

| 100 mi]
200 km

Ol os Angeles

Logan
Salt
Lake City
o
Sa;dy
o
Provo
Utah
St George
Las Vegas
Q,
Henderson
Nipton
2 Flagstaff
5
Joshua Tree
National Park Arizona
+
Phoenix
0O,
o
Chandler

Mexicali

San Diego ©
Tijuana Jlyeson
P\

Billings
o

Sheridan

Yellowstone
National Park

Wyoming Casper

Cheyenne
o

Fort Collins
)

Lovelando ©Greeley

Boulder
o

Denverg
o Centennial

Colorado
Colorado ,
2 Springs ., Fountain
Arches Valley

National Park o
Pueblo

Durango

Farmington

Santa Fe
[]

Albuguerque
Qo q

New
Mexico

Roswell
Alamogordo

Las Cruces CarO?had
)

Pearce
-y

Aber

South
Dakota

Raplg City

Nebraska
North Platte G
[E

Kearneyo

United States

Hays

Kai

Okl

Amarillo
o

Clovis

Lubbock
o

Hobbs

Abilene Fo
o

Midland
Map data ©2012 Google, INEGI -

Quick question about efficiency...

You calculated the shortest path for yourself to return home from the
reunion (Yosemite to Palo Alto) and let’s just say that it took time
X = O(([g| + [V])Iog|VI)
« With respect to the number of cities |V|, and the number of
edges or road segments |E]|

How long will it take you, in total, to calculate the shortest path for
you and all of your relatives?

A. O(|VI*X)
IVI X)

D. Other/none/more

Stanford University

Breadth-First Search

THINGS TO NOTICE:
(4) We now have the
answer to the question
“What is the shortest path
to you from F?” for every
single node in the
graph!!

Stanford University

Dijkstra’s Shortest Paths

(Like Breadth-first Search, but takes into account weight/distance
between nodes)

Stanford University

Edsger Dijkstra
1930-2002

o THE multiprogramming system (operating
system)

o Layers of abstraction!!

o Complier for a language that can do
recursion

o Dining Philosopher’s Problem (resource
contention and deadlock)

o Dijkstra’s algorithm el
o “Goto considered harmful” (title given to his it il e e
letter)

Stanford University

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://en.wikipedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg

The Structure of the "THE’-Multiprogramming System

Edsger W. Dijkstra
Technological University, Eindhoven, The Netherlands

A multiprogramming system is described in which all ac-
tivities are divided over a number of sequential processes.
These sequential processes are placed at various hierarchical
levels, in each of which one or more independent abstractions
have been implemented. The hierarchical structure proved to
be vital for the verification of the logical soundness of the
design and the correctness of its implementation,

KEY WORDS AND PHRASES: operating system, multiprogramming system,
system hierarchy, system structure, real-time debugging, program verification,
synchronizing primitives, cooperating sequential processes, system levels,
input-output buffering, multiprogramming, processor sharing, multiprocessing?

CR CATEGORIES: 4.30, 4.32

Introduction

In response to a call explicitly asking for papers “on
timely research and development efforts,” I present a
progress report on the multiprogramming effort at the
Department of Mathematics at the Technological Uni-
versity in Eindhoven. .

Having very limited resources (viz. a group of six peo-
ple of, on the average, half-time availability) and wishing
to contribute to the art of system design—including all
the stages of conception, construction, and verification,

Accordingly, I shall try to go beyond just reporting
what we have done and how, and I shall try to formulate
as well what we have learned.

I should like to end the introduction with two short
remarks on working conditions, which I make for the sake
of completeness. I shall not stress these points any further.

One remark is that production speed is severely slowed
down if one works with half-time people who have other
obligations as well. This is at least a factor of four; prob-
ably it is worse. The people themselves lose time and
energy in switching over; the group as a whole loses de-
cision speed as discussions, when needed, have often to be
postponed until all people concerned are available.

The other remark is that the members of the group
(mostly mathematicians) have previously enjoyed as good
students a university training of five to eight years and
are of Master’s or Ph.D. level. I mention this explicitly
because at least in my country the intellectual level needed
for system design is in general grossly underestimated. I
am convinced more than ever that this type of work is
very difficult, and that every effort to do it with other than
the best people is doomed to either failure or moderate
success at enormous expense.

The Tool and the Goal

The system has been designed for a Dutch machine, the
BT, Y2 NV Fleptroloormiea Riewiile (ZBYY Charae-

On Yhe «:ru.e.lb qu re::»li_j_j —}eo.clnina Cuml:buhr:j science

The second Pmr’t cf? this 4ealk pursues some QP
Yhe Ecienll‘iﬁc ond educational consequences “FJ‘]'“:
o.ssump’rian that computers represeni o radical
nOUEHJ. 1n order do give this ass.umnfﬂ'iuﬂ clear
conients . we have lo be wmuch wmore precise os ‘o
whal we wnean in this context 'bv the adJe«:iive
“radical”. We shall do so in the ﬁl_'él'__]_:;;r_%q_i-k{;_
talkk, in which we shall —rurnr.ermai*e s“?]’b evidence

in sur::]aorl“ cnp our a55umP¥ign,

The usueal wey in which we F'Imr-. »{adaj -Pnr to-
morrow is in :jes’rerdn:j's ut:ca-bu'lnrg. We do so, be-
cause we }ru to 5&1’ cwoy with the cnncersis we
are -Gcamilinr wilh and that have acquired their meaninas

The Shortest Path Problem

Suppose that you have a graph representing different locations
Each edge has an associated cost (or weight, length, etc)
We'll assume costs are nonnegative*

Goal: Find the least-cost (or lowest-weight, lowest-length,
etc) path from some node u to a node v

* else use the Bellman—Ford algorithm

Stanford University

Stanford University

Mark all nodes as gray.

Mark the initial node s as yellow and at candidate distance 0. Dijkstra's
Enqueue s into the priority queue with priority 0. Algorithm

While not all nodes have been visited:
Dequeue the lowest-cost node u from the priority queue.
Color u green. The candidate distance d that is currently stored for node u is the length of the
shortest path from s to u.
If uis the destination node £, you have found the shortest path from s to t and are done.
For each node v connected to u by an edge of length L:
— Ifvisgray:
. Color vyellow.
. Mark v's distance as d + L.
. Set v's parent to be u.
. Engueue v into the priority queue with priority d + L.
— Ifvisyellow and the candidate distance to v is greater than d + L:
. Update v's candidate distance to be d + L.
. Update v's parent to be u.
. Update v's priority in the priority queue to d + L.

