
Programming Abstractions

Cynthia Lee

C S 106B

Graphs Topics

Graphs!

1. Basics

 What are they? How do we represent them?

2. Theorems

 What are some things we can prove about graphs?

3. Breadth-first search on a graph

 Spoiler: just a very, very small change to tree version

4. Dijkstra’s shortest paths algorithm

 Spoiler: just a very, very small change to BFS

5. A* shortest paths algorithm

 Spoiler: just a very, very small change to Dijkstra’s

6. Minimum Spanning Tree

 Kruskal’s algorithm

Breadth-First Search
We’ve seen BFS before this quarter!

BFS in this class so far

Word Ladder
Assignment

4

Θ

A

B C

D E F

Trees Slime Mold

Maze

BFS Code (Maze version)

1. Make a Queue to remember places

we want to explore in the future

2. Enqueue starting point

W
h
ile

 t
h
e
re

 a
re

 s
ti
ll

th
in

g
s
 i
n

th
e

 q
u
e
u

e
,

k
e
e

p
 e

x
p
lo

ri
n
g
!

4. Dequeue a point and visit it

5. Enqueue any new points you discover

while visiting the current point

Breadth-First Search in a Graph
Graph algorithms

Breadth-First Search

A B

E F

C D

G H

I J

L

K

BFS is useful for finding

the shortest path

between two nodes.

Example:

What is the shortest way to

go from F to G?

Breadth-First Search

A B

E F

C D

G H

I J

L

K

BFS is useful for finding

the shortest path

between two nodes.

Example:

What is the shortest way to

go from F to G?

Way 1: F->E->I->G

3 edges

Breadth-First Search

A B

E F

C D

G H

I J

L

K

BFS is useful for finding

the shortest path

between two nodes.

Example:

What is the shortest way to

go from F to G?

Way 2: F->K->G

2 edges

BFS is useful for finding

the shortest path

between two nodes.

Map Example:

What is the shortest way to

go from Yoesmite (F) to

Palo Alto (J)?

A B

E F

C D

G H

I J

L

K

A B

E F

C D

G H

I J

L

K

Breadth-First Search

TO START:

(1)Color all nodes GREY

(2)Queue is empty

Yoesmite

Palo Alto

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

TO START (2):

(1)Enqueue the desired

start node

(2)Note that anytime we

enqueue a node, we

mark it YELLOW

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

LOOP PROCEDURE:

(1)Dequeue a node

(2)Mark current node

GREEN

(3)Set current node’s

GREY neighbors’ parent

pointers to current node,

then enqueue them

(remember: set them

YELLOW)

F

A B

E F

C D

G H

I J

L

K

A B

E

C D

G H

I J

L

K

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

A B D E K

F

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

B D E K

A

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

A B

E

D

K

F

A B

E F

C D

G H

I J

L

K

C

G H

I J

L

Breadth-First Search

D E K

B

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

D E K

B

C H

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

E K C H

D

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

I J

L

Breadth-First Search

K C H

E

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

K C H

E

I

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

G

J

L

Breadth-First Search

C H I

K

You predict the next

slide!

A. K’s neighbors F,G,H are

yellow and in the queue and

their parents are pointing to K

B. K’s neighbors G,H are yellow

and in the queue and their

parents are pointing to K

C. K’s neighbors G,H are yellow

and in the queue

D. Other/none/more

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I

K

G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

C H I

K

G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

H I G

C

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

H

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

I G

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

L

Breadth-First Search

G

I

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

G

I

L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

G

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

KJ

Breadth-First Search

L

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

L
J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

J

Done!

Now we know that to go

from Yoesmite (F) to Palo

Alto (J), we should go:

F->E->I->L->J

(4 edges)

(note we follow the parent

pointers backwards)

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

THINGS TO NOTICE:

(1) We used a queue

(2) What’s left is a kind of

subset of the edges, in

the form of ‘parent’

pointers

(3) If you follow the parent

pointers from the desired

end point, you will get

back to the start point,

and it will be the shortest

way to do that

Quick question about efficiency…

Let’s say that you have an extended family

with somebody in every city in the western

U.S.

Quick question about efficiency…

You’re all going to fly to Yosemite for a

family reunion, and then everyone will rent a

car and drive home, and you’ve been tasked

with making custom Yosemite-to-home

driving directions for everyone.

Quick question about efficiency…

You calculated the shortest path for yourself to return home from the
reunion (Yosemite to Palo Alto) and let’s just say that it took time
X = O((|E| + |V|)log|V|)

• With respect to the number of cities |V|, and the number of
edges or road segments |E|

How long will it take you, in total, to calculate the shortest path for
you and all of your relatives?

A. O(|V|*X)

B. O(|E|*|V|* X)

C. X

D. Other/none/more

J

L

G

I

H

CA B

E

D

K

F

A B

E F

C D

G H

I J

L

K

Breadth-First Search

THINGS TO NOTICE:

(4) We now have the

answer to the question

“What is the shortest path

to you from F?” for every

single node in the

graph!!

Dijkstra’s Shortest Paths
(Like Breadth-first Search, but takes into account weight/distance

between nodes)

Edsger Dijkstra

This file is licensed under the Creative Commons Attribution-Share Alike 3.0

Unported license. http://en.wikipedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg

1930-2002

 THE multiprogramming system (operating

system)

 Layers of abstraction!!

 Complier for a language that can do

recursion

 Dining Philosopher’s Problem (resource

contention and deadlock)

 Dijkstra’s algorithm

 “Goto considered harmful” (title given to his

letter)

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://en.wikipedia.org/wiki/File:Edsger_Wybe_Dijkstra.jpg

The Shortest Path Problem

● Suppose that you have a graph representing different locations

● Each edge has an associated cost (or weight, length, etc)

● We'll assume costs are nonnegative*

● Goal: Find the least-cost (or lowest-weight, lowest-length,

etc) path from some node u to a node v

* else use the Bellman–Ford algorithm

BA C

D E

HG

F

I

BA C

D E

HG

F

I

6

2

1

3

5

7

3

9

1

7

1

4

● Mark all nodes as gray.
● Mark the initial node s as yellow and at candidate distance 0.
● Enqueue s into the priority queue with priority 0.
● While not all nodes have been visited:
● Dequeue the lowest-cost node u from the priority queue.
● Color u green. The candidate distance d that is currently stored for node u is the length of the

shortest path from s to u.
● If u is the destination node t, you have found the shortest path from s to t and are done.
● For each node v connected to u by an edge of length L:

– If v is gray:
● Color v yellow.
● Mark v's distance as d + L.
● Set v's parent to be u.
● Enqueue v into the priority queue with priority d + L.

– If v is yellow and the candidate distance to v is greater than d + L:
● Update v's candidate distance to be d + L.
● Update v's parent to be u.
● Update v's priority in the priority queue to d + L.

Dijkstra's
Algorithm

